On dual wavelet tight frames

被引:182
|
作者
Han, B
机构
[1] Department of Mathematical Sciences, University of Alberta, Edmonton
关键词
D O I
10.1006/acha.1997.0217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A characterization of multivariate dual wavelet tight frames for any general dilation matrix is presented in this paper. As an application, Lawton's result on wavelet tight frames in L-2(R) is generalized to the n-dimensional case. Two ways of constructing certain dual wavelet tight frames in L-2(R-n) are suggested. Finally, examples of smooth wavelet tight frames in L-2(R) and H-2(R) are provided. In particular, an example is given to demonstrate that there is a function psi whose Fourier transform is positive, compactly supported, and infinitely differentiable which generates a non-MRA wavelet tight frame in H-2(R). (C) 1997 Academic Press.
引用
收藏
页码:380 / 413
页数:34
相关论文
共 50 条
  • [1] On Dual Wavelet Tight Frames
    Department of Mathematical Sciences, University of Alberta, Edmonton, Alta. T6G 2G1, Canada
    Appl Comput Harmonic Anal, 4 (380-413):
  • [2] Tight wavelet frames
    Skopina, M. A.
    DOKLADY MATHEMATICS, 2008, 77 (02) : 182 - 185
  • [3] Tight wavelet frames
    M. A. Skopina
    Doklady Mathematics, 2008, 77 : 182 - 185
  • [4] Tight wavelet frames for subdivision
    Charina, Maria
    Stoeckler, Joachim
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (02) : 293 - 301
  • [5] On Refinement Masks of Tight Wavelet Frames
    Lebedeva E.A.
    Shcherbakov I.A.
    Journal of Mathematical Sciences, 2023, 273 (4) : 476 - 484
  • [6] Tight Wavelet Frames on Multislice Graphs
    Leonardi, Nora
    Van de Ville, Dimitri
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) : 3357 - 3367
  • [7] Symmetric and antisymmetric tight wavelet frames
    Goh, Say Song
    Lim, Zhi Yuan
    Shen, Zuowei
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) : 411 - 421
  • [8] Tight periodic wavelet frames and approximation orders
    Goh, Say Song
    Han, Bin
    Shen, Zuowei
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 31 (02) : 228 - 248
  • [9] Construction for a class of smooth wavelet tight frames
    Lizhong Peng
    Haihui Wang
    Science in China Series F: Information Sciences, 2003, 46 : 445 - 458
  • [10] Tight frames and geometric properties of wavelet sets
    Benedetto, JJ
    Sumetkijakan, S
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) : 35 - 56