Outer-connected domination in graphs

被引:0
|
作者
Jiang, Hongxing [2 ]
Shan, Erfang [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325000, Peoples R China
关键词
Outer-connected domination; Nordhaus-Gaddum-type inequality; Tree;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S of vertices in a graph G = (V, E) is an outerconnected dominating set (OCDS) of G if S is a dominating set of G and G[V - S] is connected. The outer-connected domination number of G is the minimum cardinality of an OCDS of G. In this paper we characterize the graphs with large outer-connected domination number. Also, we give Nordhaus-Gaddum-type inequality on outer-connected domination and characterize the graphs with the right equality.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 50 条
  • [31] On the complexity of the minimum outer-connected dominating set problem in graphs
    D. Pradhan
    Journal of Combinatorial Optimization, 2016, 31 : 1 - 12
  • [32] Computing a minimum outer-connected dominating set for the class of chordal graphs
    Keil, J. Mark
    Pradhan, D.
    INFORMATION PROCESSING LETTERS, 2013, 113 (14-16) : 552 - 561
  • [33] OUTER CONNECTED DOMINATION IN MAXIMAL OUTERPLANAR GRAPHS AND BEYOND
    Yang, Wei
    Wu, Baoyindureng
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 575 - 590
  • [34] OUTER-K-CONNECTED COMPONENT DOMINATION IN GRAPHS
    Akhbari, M. H.
    Eslahchi, Ch.
    Rad, N. Jafari
    Hasni, R.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2011, 8 (02) : 131 - 139
  • [35] On graphs with equal domination and connected domination numbers
    Arumugam, S
    Joseph, JP
    DISCRETE MATHEMATICS, 1999, 206 (1-3) : 45 - 49
  • [36] On weakly connected domination in graphs
    Dunbar, JE
    Grossman, JW
    Hattingh, JH
    Hedetniemi, ST
    McRae, AA
    DISCRETE MATHEMATICS, 1997, 167 : 261 - 269
  • [37] Neighborhood connected domination in graphs
    Arumugam, S.
    Sivagnanam, C.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 73 : 55 - 64
  • [38] Connected domination in random graphs
    Gábor Bacsó
    József Túri
    Zsolt Tuza
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 439 - 446
  • [39] Chromatic connected domination in graphs
    Balamurugan, S.
    Anitha, M.
    Kalaiselvi, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 753 - 760
  • [40] On domination in connected cubic graphs
    Kostochka, AV
    Stodolsky, BY
    DISCRETE MATHEMATICS, 2005, 304 (1-3) : 45 - 50