Support vector EEG classification in the Fourier and time-frequency correlation domains

被引:42
|
作者
Garcia, GN [1 ]
Ebrahimi, T [1 ]
Vesin, JM [1 ]
机构
[1] Swiss Fed Inst Technol, EPFL, CH-1015 Lausanne, Switzerland
关键词
direct brain-computer communication; EEG classification; SVM; optimal SVM parameter choice; time-frequency correlation;
D O I
10.1109/CNE.2003.1196897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we use support vector machines (SVM) for classifying EEG signals corresponding to imagined motor movements. The parameters of an SVM Kernel are optimized for minimizing a theoretical error bound. Fourier features and correlative time-frequency based features are extracted from EEG signals and compared with respect to their discriminatory power.
引用
收藏
页码:591 / 594
页数:4
相关论文
共 50 条
  • [41] Time-frequency aspects of nonlinear Fourier atoms
    Chen, Qiuhui
    Li, Luoqing
    Qian, Tao
    WAVELET ANALYSIS AND APPLICATIONS, 2007, : 287 - +
  • [42] Time-frequency Selection in Two Bipolar Channels for Improving the Classification of Motor Imagery EEG
    Yang, Yuan
    Chevallier, Sylvain
    Wiart, Joe
    Bloch, Isabelle
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2744 - 2747
  • [43] Time-frequency Based EEG Motor Imagery Signal Classification with Deep Learning Networks
    Rabby, Md Khurram Monir
    Eshun, Robert B.
    Belkasim, Saeid
    Islam, A. K. M. Kamrul
    2021 IEEE FOURTH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2021), 2021, : 133 - 134
  • [44] Improving time-frequency domain sleep EEG classification via singular spectrum analysis
    Mohammadi, Sara Mahvash
    Kouchaki, Samaneh
    Ghavami, Mohammad
    Sanei, Saeid
    JOURNAL OF NEUROSCIENCE METHODS, 2016, 273 : 96 - 106
  • [45] A hybrid method based on time-frequency images for classification of alcohol and control EEG signals
    Bajaj, Varun
    Guo, Yanhui
    Sengur, Abdulkadir y
    Siuly, Siuly
    Alcin, Omer F.
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (12): : 3717 - 3723
  • [46] Acoustic seabed classification using fractional fourier transform and time-frequency transform techniques
    Barbu, Madalina
    Kaminsky, Edit
    Trahan, Russell E., Jr.
    OCEANS 2006, VOLS 1-4, 2006, : 1197 - 1202
  • [47] Visualization of EEG using time-frequency distributions
    Stiber, BZ
    Sato, S
    METHODS OF INFORMATION IN MEDICINE, 1997, 36 (4-5) : 298 - 301
  • [48] Classification Epileptic Seizures in EEG Using Time-Frequency Image and Block Texture Features
    Li, Mingyang
    Sun, Xiaoying
    Chen, Wanzhong
    Jiang, Yun
    Zhang, Tao
    IEEE ACCESS, 2020, 8 : 9770 - 9781
  • [49] Classification of Dementia EEG Based on Sub-bands Using Time-Frequency Approaches
    Cura, Ozlem Karabiber
    Yilmaz, Gulce Cosku
    Ture, Hatice Sabiha
    Akan, Aydin
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [50] Adaptive time-frequency parametrization in pharmaco EEG
    Durka, PJ
    Szelenberger, W
    Blinowska, KJ
    Androsiuk, W
    Myszka, M
    JOURNAL OF NEUROSCIENCE METHODS, 2002, 117 (01) : 65 - 71