Support vector EEG classification in the Fourier and time-frequency correlation domains

被引:42
|
作者
Garcia, GN [1 ]
Ebrahimi, T [1 ]
Vesin, JM [1 ]
机构
[1] Swiss Fed Inst Technol, EPFL, CH-1015 Lausanne, Switzerland
关键词
direct brain-computer communication; EEG classification; SVM; optimal SVM parameter choice; time-frequency correlation;
D O I
10.1109/CNE.2003.1196897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we use support vector machines (SVM) for classifying EEG signals corresponding to imagined motor movements. The parameters of an SVM Kernel are optimized for minimizing a theoretical error bound. Fourier features and correlative time-frequency based features are extracted from EEG signals and compared with respect to their discriminatory power.
引用
收藏
页码:591 / 594
页数:4
相关论文
共 50 条
  • [1] A combined Fourier analysis and support vector machine for EEG classification
    de Carvalho, Jhonnata B.
    Silva, Murilo C.
    von Borries, George F.
    de Pinho, Andre L. S.
    von Borries, Ricardo F.
    CHILEAN JOURNAL OF STATISTICS, 2019, 10 (01): : 3 - 20
  • [2] Time-Frequency Representations for EEG Artifact Classification with CNNs
    Tiwary, Hrishikesh
    Bhavsar, Arnav
    2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2021,
  • [3] Time-frequency analysis of EEG for improved classification of emotion
    Vanitha V.
    Krishnan P.
    Vanitha, V. (vanikkdi@gmail.com), 2017, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (23) : 191 - 212
  • [4] Time-frequency distributions in the classification of epilepsy from EEG signals
    Musselman, Marcus
    Djurdjanovic, Dragan
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (13) : 11413 - 11422
  • [5] CLASSIFICATION OF EEG SIGNALS USING ADAPTIVE TIME-FREQUENCY DISTRIBUTIONS
    Khan, Nabeel A.
    Ali, Sadiq
    METROLOGY AND MEASUREMENT SYSTEMS, 2016, 23 (02) : 251 - 260
  • [6] Time Series Pattern Discovery and Classification with Variable Scales in Time-frequency Domains
    Wei C.-X.
    Wang Z.-H.
    Yuan J.-D.
    Lin Q.-H.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (12): : 4411 - 4428
  • [7] Comparison of Time-Frequency Feature Extraction Methods for EEG Signals Classification
    Rutkowski, Grzegorz
    Patan, Krzysztof
    Lesniak, Pawel
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2013, 7895 : 320 - +
  • [8] Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning
    Ozdemir, Mehmet Akif
    Cura, Ozlem Karabiber
    Akan, Aydin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (08)
  • [9] Neural network classification of EEG signals using time-frequency representation
    Gope, C
    Kehtarnavaz, N
    Nair, D
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 2502 - 2507
  • [10] A Dementia Classification Framework Using Frequency and Time-Frequency Features Based on EEG Signals
    Durongbhan, Pholpat
    Zhao, Yifan
    Chen, Liangyu
    Zis, Panagiotis
    De Marco, Matteo
    Unwin, Zoe C.
    Venneri, Annalena
    He, Xiongxiong
    Li, Sheng
    Zhao, Yitian
    Blackburn, Daniel J.
    Sarrigiannis, Ptolemaios G.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (05) : 826 - 835