Boundary Observer Design for Coupled ODEs-Hyperbolic PDEs Systems

被引:0
|
作者
Ferrante, Francesco [1 ]
Cristofaro, Andrea [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
[2] Univ Oslo, Dept Technol Syst, N-2007 Kjeller, Norway
关键词
FLOW; STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Boundary observer design of a system of n(chi)-ODEs coupled to n(x)-hyperbolic PDEs with positive convective speeds is studied. An infinite dimensional observer is used to solve the considered state estimation problem. The interconnection of the observer and the system is written in estimation error coordinates and analyzed as an abstract dynamical system on a specific Hilbert space. The design of the observer is performed to achieve global exponential stability of the estimation error with respect to a suitable norm. Sufficient conditions in the form matrix inequalities are given for the design of the observer. The effectiveness of the approach is shown in a numerical example.
引用
收藏
页码:2418 / 2423
页数:6
相关论文
共 50 条
  • [21] Observer Design for a Class of Semilinear Hyperbolic PDEs With Distributed Sensing and Parametric Uncertainties
    Holta, Haavard
    Aamo, Ole Morten
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (01) : 134 - 145
  • [22] Boundary Control of n+1 Coupled Linear Hyperbolic PDEs with Uncertain Boundary Parameters
    Anfinsen, Henrik
    Aamo, Ole Morten
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 2477 - 2484
  • [23] Adaptive boundary observer design for linear hyperbolic systems; Application to estimation in heat exchangers
    Ghousein, Mohammad
    Witrant, Emmanuel
    Bhanot, Viren
    Petagna, Paolo
    AUTOMATICA, 2020, 114
  • [24] Unknown Input Observer Design for a Class of Semilinear Hyperbolic Systems with Dynamic Boundary Conditions
    Cristofaro A.
    Ferrante F.
    IEEE Transactions on Automatic Control, 2023, 68 (09) : 5721 - 5728
  • [25] Boundary observer design for cascaded ODE - Hyperbolic PDE systems: A matrix inequalities approach
    Ferrante, Francesco
    Cristofaro, Andrea
    Prieur, Christophe
    AUTOMATICA, 2020, 119
  • [26] Two-Sided Boundary Stabilization of Heterodirectional Linear Coupled Hyperbolic PDEs
    Auriol, Jean
    Di Meglio, Florent
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (08) : 2421 - 2436
  • [27] Hyperbolic observer design for a class of nonlinear systems
    Parvizian, Majid
    Khandani, Khosro
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [28] Boundary adaptive observer design for heat PDEs with spatially varying parameters
    Bouklata, A.
    Giri, F.
    Krstic, M.
    Brouri, A.
    Chaoui, F. Z.
    IFAC PAPERSONLINE, 2023, 56 (02): : 9930 - 9935
  • [29] A Coupled System of PDEs and ODEs Arising in Electrocardiograms Modeling
    Boulakial, Muriel
    Angel Fernandez, Miguel
    Gerbeau, Jean -Frederic
    Zemzemi, Nejib
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2008, (01)
  • [30] Boundary Estimation of Boundary Parameters for Linear Hyperbolic PDEs
    Bin, Michelangelo
    Di Meglio, Florent
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3890 - 3904