A Cramer-Rao Lower Bound for the Estimation of Bias with a Single Bearing-Only Sensor

被引:0
|
作者
Martin, Sean R. [1 ]
Abernathy, Matthew R. [1 ]
Moshtagh, Nima [1 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
bias; Kalman filter; Cramer-Rao Lower Bound; Observability; Multi-target Tracking;
D O I
10.23919/fusion45008.2020.9190625
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a metric for finding optimal sensor and target geometries that provide accurate estimates of bias during target tracking with a single sensor taking measurements of bearing. Since the bias cannot be measured directly, it is shown how to manipulate the equations of a Kalman filter to produce a pseudo measurement of bias and its associated measurement error covariance. These measurement error covariances are used to form a Cramer-Rao lower bound (CRLB) on the bias estimation variance as a function of sensor and target geometries. It is shown that highly accurate estimates of bias can be produced using a single sensor, even if the kinematic state estimate of the target is poor.
引用
收藏
页码:677 / 683
页数:7
相关论文
共 50 条
  • [21] Posterior Cramer-Rao lower bound for wireless sensor localisation networks
    Li, Siming
    Lv, Jing
    Tian, Shiwei
    ELECTRONICS LETTERS, 2018, 54 (22) : 1296 - 1297
  • [22] THE BAYESIAN CRAMER-RAO LOWER BOUND IN PHOTOMETRY
    Espinosa, Sebastian
    Silva, Jorge F.
    Mendez, Rene A.
    Orchard, Marcos
    VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 50 - 51
  • [23] CRAMER-RAO LOWER BOUND ON WAVE-FRONT SENSOR ERROR
    CEDERQUIST, J
    ROBINSON, SR
    KRYSKOWSKI, D
    FIENUP, JR
    WACKERMAN, CC
    OPTICAL ENGINEERING, 1986, 25 (04) : 586 - 592
  • [24] The Cramer-Rao lower bound for bilinear systems
    Zou, QY
    Lin, ZP
    Ober, RJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (05) : 1666 - 1680
  • [25] Cramer-Rao lower bound and parameter estimation for multibeam satellite links
    Gappmair, Wilfried
    Ginesi, Alberto
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2017, 35 (04) : 343 - 357
  • [26] On the Cramer-Rao Bound of Autoregressive Estimation in Noise
    Weruaga, Luis
    Melko, O. Michael
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 373 - 376
  • [27] Cramer-Rao Bound for Parameter Estimation in Sensor Arrays with Mutual Coupling
    Pascual, J. P.
    von Ellenrieder, N.
    Muravchik, C. H.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (01) : 91 - 96
  • [28] On the generalized Cramer-Rao bound for the estimation of the location
    Batalama, SN
    Kazakos, D
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 487 - 492
  • [29] DOPPLER FREQUENCY ESTIMATION AND THE CRAMER-RAO BOUND
    BAMLER, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991, 29 (03): : 385 - 390
  • [30] Cramer-Rao bound for joint estimation problems
    Ijyas, V. P. Thafasal
    Sameer, S. M.
    ELECTRONICS LETTERS, 2013, 49 (06) : 427 - 428