The group Diffie-Hellman problems

被引:0
|
作者
Bresson, E
Chevassut, O
Pointcheval, D
机构
[1] Ecole Normale Super, F-75230 Paris 05, France
[2] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Catholic Univ Louvain, B-31348 Louvain, Belgium
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study generalizations of the Diffie-Hellman problems recently used to construct cryptographic schemes for practical purposes. The Group Computational and the Group Decisional Diffie-Hellman assumptions not only enable one to construct efficient pseudorandom functions but also to naturally extend the Diffie-Hellman protocol to allow more than two parties to agree on a secret key. In this paper we provide results that add to our confidence in the GCDH problem. We reach this aim by showing exact relations among the GCDH, GDDH, CDH and DDH problems.
引用
收藏
页码:325 / 338
页数:14
相关论文
共 50 条
  • [21] Provably secure authenticated group Diffie-Hellman key exchange
    Bresson, Emmanuel
    Chevassut, Olivier
    Pointcheval, David
    ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY, 2007, 10 (03)
  • [22] Polynomial representations of the Diffie-Hellman mapping
    El Mahassni, E
    Shparlinski, I
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 63 (03) : 467 - 473
  • [23] Efficient signature schemes with tight reductions to the Diffie-Hellman problems
    Goh, Eu-Jin
    Jarecki, Stanislaw
    Katz, Jonathan
    Wang, Nan
    JOURNAL OF CRYPTOLOGY, 2007, 20 (04) : 493 - 514
  • [24] Signed (Group) Diffie-Hellman Key Exchange with Tight Security
    Pan, Jiaxin
    Qian, Chen
    Ringerud, Magnus
    JOURNAL OF CRYPTOLOGY, 2022, 35 (04)
  • [25] Decidability for Lightweight Diffie-Hellman Protocols
    Dougherty, Daniel J.
    Guttman, Joshua D.
    2014 IEEE 27TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF), 2014, : 217 - 231
  • [26] The square root Diffie-Hellman problem
    Roh, Dongyoung
    Hahn, Sang Geun
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (02) : 179 - 187
  • [27] Diffie-Hellman Protocol as a Symmetric Cryptosystem
    Burda, Karel
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (07): : 33 - 37
  • [28] The Kernel Matrix Diffie-Hellman Assumption
    Morillo, Paz
    Rafols, Carla
    Villar, Jorge L.
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2016, PT I, 2016, 10031 : 729 - 758
  • [29] A polynomial representation of the Diffie-Hellman mapping
    Meidl, W
    Winterhof, A
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2002, 13 (04) : 313 - 318
  • [30] On the statistical properties of Diffie-Hellman distributions
    Ran Canetti
    John Friedlander
    Sergei Konyagin
    Michael Larsen
    Daniel Lieman
    Igor Shparlinski
    Israel Journal of Mathematics, 2000, 120 : 23 - 46