Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor

被引:4
|
作者
Abecassis, Ursula Vasconcelos [1 ,2 ]
de Lima Monteiro, Davies William [2 ]
Salles, Luciana Pedrosa [2 ]
de Moraes Cruz, Carlos Augusto [3 ]
Agra Belmonte, Pablo Nunes [2 ]
机构
[1] Inst Fed Amazonas, Dept Elect & Telecommun, Av Governador Danilo Areosa,1672 Dist Ind, BR-69075351 Manaus, AM, Brazil
[2] Univ Fed Minas Gerais, DEE PPGEE, Dept Elect Engn, Av Antonio Carlos,6627 Pampulha, BR-31270010 Belo Horizonte, MG, Brazil
[3] Univ Fed Amazonas, Dept Elect & Comp, BR-69077000 Manaus, AM, Brazil
关键词
wavefront sensor; adaptive optics; SPICE; CMOS; simulation; active pixel; quad-cell; integrated circuits; ADAPTIVE OPTICS; RECONSTRUCTION; DOMAIN;
D O I
10.3390/s18103282
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work presents a numerical simulation of a Hartmann-Shack wavefront sensor (WFS) that assesses the impact of integrated electronic circuitry on the sensor performance, by evaluating a full detection chain encompassing wavefront sampling, photodetection, electronic circuitry and wavefront reconstruction. This platform links dedicated C algorithms for WFS to a SPICE circuit simulator for integrated electronics. The complete codes can be easily replaced in order to represent different detection or reconstruction methods, while the circuit simulator employs reliable models of either off-the-shelf circuit components or custom integrated circuit modules. The most relevant role of this platform is to enable the evaluation of the applicability and constraints of the focal plane of a given wavefront sensor prior to the actual fabrication of the detector chip. In this paper, we will present the simulation results for a Hartmann-Shack wavefront sensor with an orthogonal array of quad-cells (QC) integrated along with active-pixel (active-pixel sensor (APS)) circuitry and analog-to-digital converters (ADC) on a "complementary metal oxide semiconductor" (CMOS) process and deploying a modal wavefront reconstructor. This extended simulation capability for wavefront sensors enables the test and verification of different photosensitive and circuitry topologies for position-sensitive detectors combined with the simulation of sampling microlenses and reconstruction algorithms, with the goal of enhancing the accuracy in the prediction of the wavefront-sensor performance before a detector CMOS chip is actually fabricated.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Electron Multiplying CMOS as Shack-Hartmann wavefront sensor
    Buton, C.
    Fereyre, P.
    Fournier, M.
    Mayer, F.
    Barbier, R.
    HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VII, 2016, 9915
  • [32] A high-precision centroid detecting method for Hartmann-Shack wavefront sensor
    Li, Jing
    Gong, Yan
    Hu, Xinrong
    Li, Chuncai
    Zhongguo Jiguang/Chinese Journal of Lasers, 2014, 41 (03):
  • [33] Characterization of Hermite-Gaussian beams by using Hartmann-Shack wavefront sensor
    Gao, CQ
    Gao, MW
    Horst, W
    CHINESE PHYSICS LETTERS, 2004, 21 (11) : 2191 - 2194
  • [34] Novel laser beam collimation system with Hartmann-Shack wavefront sensor as a tool
    Wu, Jiajie
    Chen, Jiabi
    Xu, Ancheng
    Gao, Xiaoyan
    5TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTICAL TEST AND MEASUREMENT TECHNOLOGY AND EQUIPMENT, 2010, 7656
  • [35] Hartmann-Shack wavefront sensor for adaptive optics confocal scanning laser ophthalmoscopy
    Bao Mingdi
    He Yi
    Ye Hong
    Xing Lina
    Fan Jinyu
    Chen Yiwei
    Shi Guohua
    AOPC 2023:OPTIC FIBER GYRO, 2023, 12968
  • [36] Hartmann-Shack wavefront reconstruction with bitmap image processing
    Bezzubik, Vitalii
    Belashenkov, Nikolai
    Soloviev, Oleg
    Vasilyev, Vladimir
    Vdovin, Gleb
    OPTICS LETTERS, 2020, 45 (04) : 972 - 975
  • [37] Hartmann-Shack wavefront sensing for nonlinear materials characterization
    Rativa, D.
    de Araujo, R. E.
    Gomes, A. S. L.
    Vohnsen, B.
    OPTICS EXPRESS, 2009, 17 (24): : 22047 - 22053
  • [38] Neural network modal wavefront reconstruction for Hartmann-Shack wavefront sensors
    Bille, JF
    Nirmaier, T
    Pudasaini, G
    Diez, CA
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U18 - U18
  • [39] Design of low-order Hartmann-Shack wavefront sensor for annular laser beam
    Feng Y.
    Wei C.
    Liu X.
    Ren X.
    Wang Z.
    Meng Z.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50 (07):
  • [40] Simultaneous quantification of longitudinal and transverse ocular chromatic aberrations with Hartmann-Shack wavefront sensor
    Deng, Yangchun
    Zhao, Junlei
    Dai, Yun
    Zhang, Yudong
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2018, 11 (04)