Stability and the index of biharmonic hypersurfaces in a Riemannian manifold

被引:3
|
作者
Ou, Ye-Lin [1 ]
机构
[1] Texas A&M Univ, Dept Math, Commerce, TX 75429 USA
关键词
The second variations of biharmonic hypersurfaces; Stable biharmonic hypersurfaces; The index of biharmonic hypersurfaces; The index of biharmonic torus; Constant mean curvature hypersurfaces; MAPS; SUBMANIFOLDS;
D O I
10.1007/s10231-021-01135-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give an explicit second variation formula for a biharmonic hypersurface in a Riemannian manifold similar to that of a minimal hypersurface. We then use the second variation formula to compute the normal stability index of the known biharmonic hypersurfaces in a Euclidean sphere and to prove the nonexistence of unstable proper biharmonic hypersurface in a Euclidean space or a hyperbolic space, which adds another special case to support Chen's conjecture on biharmonic submanifolds.
引用
收藏
页码:733 / 742
页数:10
相关论文
共 50 条
  • [41] Capillary Stable Minimal Hypersurfaces in a High Dimensional Riemannian Manifold
    Lee, Sanghun
    Park, Sangwoo
    Pyo, Juncheol
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (05)
  • [42] A MAXIMUM PRINCIPLE FOR COMPLETE HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLD
    Zhang, Shicheng
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 29 (01): : 141 - 153
  • [43] HYPERSURFACES OF A RIEMANNIAN MANIFOLD WITH SEMI-SYMMETRIC METRIC CONNECTION
    IMAI, T
    TENSOR, 1972, 23 (03): : 300 - 306
  • [44] Stability of capillary hypersurfaces in a manifold with density
    Li, Haizhong
    Xiong, Changwei
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (08)
  • [45] On the stability of Riemannian manifold with parallel spinors
    Dai, XZ
    Wang, XD
    Wei, GF
    INVENTIONES MATHEMATICAE, 2005, 161 (01) : 151 - 176
  • [46] On the stability of Riemannian manifold with parallel spinors
    Xianzhe Dai
    Xiaodong Wang
    Guofang Wei
    Inventiones mathematicae, 2005, 161 : 151 - 176
  • [47] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    Eudes L. de Lima
    Henrique F. de Lima
    Lucas S. Rocha
    European Journal of Mathematics, 2022, 8 : 388 - 402
  • [48] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    de Lima, Eudes L.
    de Lima, Henrique F.
    Rocha, Lucas S.
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (01) : 388 - 402
  • [49] Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold
    Fontenele, FX
    Silva, SL
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2002, 74 (02): : 199 - 205
  • [50] Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature
    Nguyen Thac Dung
    Keomkyo Seo
    Annals of Global Analysis and Geometry, 2012, 41 : 447 - 460