Two shape parametrizations for structural optimization of triangular shells

被引:11
|
作者
Marino, Enzo [1 ]
Salvatori, Luca [1 ]
Orlando, Maurizio [1 ]
Borri, Claudio [1 ]
机构
[1] Univ Florence, DICEA, Via Santa Marta 3, I-50139 Florence, Italy
关键词
Shells; Structural optimization; Form finding; Bezier surface; Kresge auditorium; Heuristic shape parametrization; COMPUTATIONAL METHODS; FINITE-ELEMENTS; DESIGN; ALGORITHMS; SYSTEM; SCALE; LOAD; CAD;
D O I
10.1016/j.compstruc.2015.12.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The complexity of state-of-the-art tools for shell optimization may limit their applicability in common practice. We propose two shape parametrizations, inserted into a robust and simple procedure, based on linear finite elements and gradient-based optimization. We represent the mid-surface by triangular Bezier surface and ad-hoc heuristic functions. The first method allows searching for a general shape, while in the second one the functions are chosen according to structural and aesthetical criteria. Small number of design variables ensures efficiency. The procedure is applied to Kresge auditorium at MIT. Both parametrizations provide satisfactory results, with slightly better performances of Bezier surface representation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Shape optimization of shells: an R-Funicularity based approach
    Argento, Gloria Rita
    Varano, Valerio
    Marino, Enzo
    Gabriele, Stefano
    STRUCTURES, 2024, 66
  • [32] Generatrix shape optimization of stiffened shells for low imperfection sensitivity
    WANG Bo
    HAO Peng
    LI Gang
    WANG XiaoJun
    TANG XiaoHan
    LUAN Yu
    Science China(Technological Sciences), 2014, (10) : 2012 - 2019
  • [33] Generatrix shape optimization of stiffened shells for low imperfection sensitivity
    Wang Bo
    Hao Peng
    Li Gang
    Wang XiaoJun
    Tang XiaoHan
    Luan Yu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (10) : 2012 - 2019
  • [34] ANALYSIS AND SHAPE OPTIMIZATION OF VARIABLE THICKNESS PRISMATIC FOLDED PLATES AND CURVED SHELLS .2. SHAPE OPTIMIZATION
    HINTON, E
    RAO, NVR
    THIN-WALLED STRUCTURES, 1993, 17 (03) : 161 - 183
  • [35] Concurrent shape optimization of structural components
    Edke, MS
    Chang, KH
    INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 2, PROCEEDINGS, 2004, : 383 - 388
  • [36] STRUCTURAL SHAPE OPTIMIZATION WITH MSC NASTRAN
    KODIYALAM, S
    VANDERPLAATS, GN
    MIURA, H
    COMPUTERS & STRUCTURES, 1991, 40 (04) : 821 - 829
  • [37] An integrated approach to structural shape optimization
    Pourazady, M
    Fu, Z
    COMPUTERS & STRUCTURES, 1996, 60 (02) : 279 - 289
  • [38] Structural shape optimization in a synthetic environment
    Yeh, TP
    Vance, JM
    PROCEEDINGS OF THE HIGH-PERFORMANCE COMPUTING (HPC'98), 1998, : 317 - 322
  • [39] Structural shape optimization of vibration characteristics
    Nippon Kikai Gakkai Ronbunshu C Hen, 587 (2662-2667):
  • [40] STRUCTURAL SHAPE OPTIMIZATION USING OASIS
    ESPING, B
    HOLM, D
    STRUCTURAL OPTIMIZATION /, 1988, : 93 - 100