JS']JSE: Joint Semantic Encoder for zero-shot gesture learning

被引:1
|
作者
Madapana, Naveen [1 ]
Wachs, Juan [1 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47906 USA
基金
美国医疗保健研究与质量局;
关键词
Zero-shot learning; Gesture recognition; Feature selection; Transfer learning; ACTION RECOGNITION; VISUALIZATION; INTERFACE;
D O I
10.1007/s10044-021-00992-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning (ZSL) is a transfer learning paradigm that aims to recognize unseen categories just by having a high-level description of them. While deep learning has greatly pushed the limits of ZSL for object classification, ZSL for gesture recognition (ZSGL) remains largely unexplored. Previous attempts to address ZSGL were focused on the creation of gesture attributes and algorithmic improvements, and there is little or no research concerned with feature selection for ZSGL. It is indisputable that deep learning has obviated the need for feature engineering for problems with large datasets. However, when the data are scarce, it is critical to leverage the domain information to create discriminative input features. The main goal of this work is to study the effect of three different feature extraction techniques (velocity, heuristical and latent features) on the performance of ZSGL. In addition, we propose a bilinear auto-encoder approach, referred to as Joint Semantic Encoder (JSE), for ZSGL that jointly minimizes the reconstruction, semantic and classification losses. We conducted extensive experiments to compare and contrast the feature extraction techniques and to evaluate the performance of JSE with respect to existing ZSL methods. For attribute-based classification scenario, irrespective of the feature type, results showed that JSE outperforms other approaches by 5% (p<0.01). When JSE is trained with heuristical features in across-category condition, we showed that JSE significantly outperforms other methods by 5% (p<0.01)).
引用
收藏
页码:679 / 692
页数:14
相关论文
共 50 条
  • [31] Semantic Feature Extraction for Generalized Zero-Shot Learning
    Kim, Junhan
    Shim, Kyuhong
    Shim, Byonghyo
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1166 - 1173
  • [32] Boosted Zero-Shot Learning with Semantic Correlation Regularization
    Pi, Te
    Li, Xi
    Zhang, Zhongfei
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2599 - 2605
  • [33] Learning exclusive discriminative semantic information for zero-shot learning
    Jian-Xun Mi
    Zhonghao Zhang
    Debao Tai
    Li-Fang Zhou
    Wei Jia
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 761 - 772
  • [34] A study on zero-shot learning from semantic viewpoint
    Bhagat, P. K.
    Choudhary, Prakash
    Singh, Kh Manglem
    VISUAL COMPUTER, 2023, 39 (05): : 2149 - 2163
  • [35] A meaningful learning method for zero-shot semantic segmentation
    Xianglong Liu
    Shihao Bai
    Shan An
    Shuo Wang
    Wei Liu
    Xiaowei Zhao
    Yuqing Ma
    Science China Information Sciences, 2023, 66
  • [36] Deep Semantic Structural Constraints for Zero-Shot Learning
    Li, Yan
    Jia, Zhen
    Zhang, Junge
    Huang, Kaiqi
    Tan, Tieniu
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7049 - 7056
  • [37] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2606 - 2622
  • [38] A Semantic Similarity Supervised Autoencoder for Zero-Shot Learning
    Shen, Fengli
    Lu, Zhe-Ming
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (06): : 1419 - 1422
  • [39] Attribute Attention for Semantic Disambiguation in Zero-Shot Learning
    Liu, Yang
    Guo, Jishun
    Cai, Deng
    He, Xiaofei
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6697 - 6706
  • [40] Learning complementary semantic information for zero-shot recognition
    Hu, Xiaoming
    Wang, Zilei
    Li, Junjie
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 115