General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares

被引:19
|
作者
Xu, Chenran [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Cusp forms; Fourier coefficient; Power sum; L-function;
D O I
10.1016/j.jnt.2021.07.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(f) (n) denote the nth normalized Fourier coefficient of the primitive holomorphic cusp forms of even integral weight k >= 2 for the full modular group SL(2, Z). For x >= 1, we are interested in the sums sigma(n <= x) lambda(f)(n)(l) and sigma(a2+b2 <= x )lambda(f) (a(2) + b(2))(l). In this paper, we are able to establish the asymptotic formulae for general cases of the power sum for every positive integer l is an element of N. The special cases of our results improve previous results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:214 / 229
页数:16
相关论文
共 50 条