Asymptotic formula of Fourier coefficients of cusp forms over sum of two squares

被引:0
|
作者
Feng, Jinzhi [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
RAMANUJAN JOURNAL | 2025年 / 66卷 / 03期
关键词
Cusp forms; Fourier coefficients; Symmetric power L-functions; Dirichlet character;
D O I
10.1007/s11139-024-01000-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda f(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{f}(n)$$\end{document} be the nth normalized Fourier coefficient of the primitive holomorphic Hecke eigenforms of even integral weight k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} for the full modular group SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb {Z})$$\end{document}. In this paper, we investigate the asymptotic formula of the power sum & sum;n <= x lambda fl(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n \le x} \lambda <^>{l}_{f}(n)$$\end{document} for l=2m >= 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=2m \ge 6$$\end{document} and & sum;a2+b2 <= x lambda fl(a2+b2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{a<^>{2}+b<^>{2}\le x} \lambda <^>{l}_{f} (a<^>{2}+b<^>{2})$$\end{document} for l=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=2m $$\end{document}, and improve on previous error estimates.
引用
收藏
页数:13
相关论文
共 50 条