On a non-smooth eigenvalue problem in Orlicz-Sobolev spaces

被引:13
|
作者
Le, Vy K. [1 ]
Motreanu, Dumitru [2 ]
Motreanu, Viorica V. [3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
[2] Univ Perpignan, Dept Math, F-66025 Perpignan, France
[3] Univ Zurich, Inst Math, CH-8001 Zurich, Switzerland
关键词
non-smooth eigenvalue problem; Orlicz-Sobolev spaces; finite-dimensional approximation; Ljusternik-Schnirelman theory; Krasnoselskii genus; LJUSTERNIK-SCHNIRELMANN THEOREM;
D O I
10.1080/00036810802428987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies a non-smooth eigenvalue problem for a Dirichlet boundary value inclusion on a bounded domain which involves a phi-Laplacian and the generalized gradient in the sense of Clarke of a locally Lipschitz function depending also on the points in . Specifically, the existence of a sequence of eigensolutions satisfying in addition certain asymptotic and locational properties is established. The approach relies on an approximation process in a suitable Orlicz-Sobolev space by eigenvalue problems in finite-dimensional spaces for which one can apply a finite-dimensional, non-smooth version of the Ljusternik-Schnirelman theorem. As a byproduct of our analysis, a version of Aubin-Clarke's theorem in Orlicz spaces is obtained.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 50 条
  • [41] A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces
    Santos, Jefferson Abrantes
    Soares, Sergio H. Monari
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (06) : 1687 - 1720
  • [42] Multiplicity of solutions for a nonhomogeneous problem involving a potential in Orlicz-Sobolev spaces
    Irzi, Nawal
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2021, 12 (03) : 1 - 19
  • [43] MULTIPLE SOLUTIONS FOR A NONLOCAL KIRCHHOFF PROBLEM IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    Xiang, Mingqi
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (02): : 287 - 303
  • [44] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces
    Ochoa, Pablo
    Silva, Analia
    Marziani, Maria Jose Suarez
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 21 - 47
  • [45] Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) : 4785 - 4795
  • [46] Imbeddings of anisotropic Orlicz-Sobolev spaces and applications
    Jain, P
    Lukkassen, D
    Persson, LE
    Svanstedt, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 181 - 195
  • [47] HARDY INEQUALITIES IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Salort, Ariel M.
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 183 - 195
  • [48] NEMITSKY OPERATORS BETWEEN ORLICZ-SOBOLEV SPACES
    HARDY, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 30 (02) : 251 - 269
  • [49] Magnetic fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    STUDIA MATHEMATICA, 2021, 259 (01) : 1 - 24
  • [50] Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz-Sobolev spaces
    Afrouzi, Ghasem A.
    Shokooh, Shaeid
    Chung, Nguyen T.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (03): : 361 - 378