Multi-Agent Reinforcement Learning for Network Load Balancing in Data Center

被引:2
|
作者
Yao, Zhiyuan [1 ,2 ]
Ding, Zihan [3 ]
Clausen, Thomas [1 ]
机构
[1] Ecole Polytech, Paris, France
[2] Cisco Syst, Paris, France
[3] Princeton Univ, Princeton, NJ USA
关键词
MARL; load balancing; distributed systems;
D O I
10.1145/3511808.3557133
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the network load balancing problem, a challenging real-world task for multi-agent reinforcement learning (MARL) methods. Conventional heuristic solutions like Weighted-Cost Multi-Path (WCMP) and Local Shortest Queue (LSQ) are less flexible to the changing workload distributions and arrival rates, with a poor balance among multiple load balancers. The cooperative network load balancing task is formulated as a Dec-POMDP problem, which naturally induces the MARL methods. To bridge the reality gap for applying learning-based methods, all models are directly trained and evaluated on a real-world system from moderateto large-scale setups. Experimental evaluations show that the independent and "selfish" load balancing strategies are not necessarily the globally optimal ones, while the proposed MARL solution has a superior performance over different realistic settings. Additionally, the potential difficulties of the application and deployment of MARL methods for network load balancing are analysed, which helps draw the attention of the learning and network communities to such challenges.
引用
收藏
页码:3594 / 3603
页数:10
相关论文
共 50 条
  • [21] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [22] Industrial load management using multi-agent reinforcement learning for rescheduling
    Roesch, Martin
    Linder, Christian
    Bruckdorfer, Christian
    Hohmann, Andrea
    Reinhart, Gunther
    2019 SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR INDUSTRIES (AI4I 2019), 2019, : 99 - 102
  • [23] Cooperatively Improving Data Center Energy Efficiency Based on Multi-Agent Deep Reinforcement Learning
    Chi, Ce
    Ji, Kaixuan
    Song, Penglei
    Marahatta, Avinab
    Zhang, Shikui
    Zhang, Fa
    Qiu, Dehui
    Liu, Zhiyong
    ENERGIES, 2021, 14 (08)
  • [24] DATA-DRIVEN ROBUST MULTI-AGENT REINFORCEMENT LEARNING
    Wang, Yudan
    Wang, Yue
    Zhou, Yi
    Velasquez, Alvaro
    Zou, Shaofeng
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [25] Multi-Agent Cognition Difference Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Qiu, Tenghai
    Liu, Zhen
    Pu, Zhiqiang
    Yi, Jianqiang
    Yuan, Wanmai
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [26] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [27] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [28] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [29] Learning to Share in Multi-Agent Reinforcement Learning
    Yi, Yuxuan
    Li, Ge
    Wang, Yaowei
    Lu, Zongqing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [30] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,