CO2 Chemisorption Behavior of Coordination-Derived Phenolate Sorbents

被引:17
|
作者
Suo, Xian [1 ]
Yang, Zhenzhen [2 ]
Fu, Yuqing [3 ]
Do-Thanh, Chi-Linh [1 ]
Chen, Hao [1 ]
Luo, Huimin [2 ]
Jiang, De-en [3 ]
Mahurin, Shannon M. [2 ]
Xing, Huabin [4 ]
Dai, Sheng [1 ,2 ]
机构
[1] Univ Tennessee, Dept Chem, Joint Inst Adv Mat, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
[3] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[4] Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Peoples R China
关键词
carbon dioxide; chemisorption; coordination effect; crown ether; phenolate sorbents; CARBON-DIOXIDE CAPTURE; IONIC LIQUIDS; CROWN-ETHERS; AMBIENT AIR; ABSORPTION; CHEMISTRY; OXIDATION;
D O I
10.1002/cssc.202100666
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 chemisorption via C-O bond formation is an efficient methodology in carbon capture especially using phenolate-based ionic liquids (ILs) as the sorbents to afford carbonate products. However, most of the current IL systems involve alkylphosphonium cations, leading to side reactions via the ylide intermediate pathway. It is important to figure out the CO2 chemisorption behavior of phenolate-derived sorbents using inactive and easily accessible cation counterparts without active protons. Herein, phenolate-based systems were constructed via coordination between alkali metal cations with crown ethers to avoid the participation of active protons in CO2 chemisorption. Reaction pathway study revealed that CO2 uptake could be achieved by O-C bond formation to afford carbonate. CO2 uptake capacity and reaction enthalpy were significantly influenced by the coordination effect, alkali metal types, and alkyl groups on the benzene ring.
引用
收藏
页码:2854 / 2859
页数:6
相关论文
共 50 条
  • [21] Shaped polyethyleneimine sorbents for CO2 capture
    Knowles, Gregory P.
    Liang, Zhijian
    Chaffee, Alan L.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 238 : 14 - 18
  • [22] Moisture-Driven CO2 Sorbents
    Shi, Xiaoyang
    Xiao, Hang
    Kanamori, Kohei
    Yonezu, Akio
    Lackner, Klaus S.
    Chen, Xi
    JOULE, 2020, 4 (08) : 1823 - 1837
  • [23] CO2 capture utilizing solid sorbents
    Siriwardane, R
    Shen, M
    Fisher, E
    Poston, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U955 - U955
  • [24] Optimizing Solid Sorbents for CO2 Capture
    Berger, Adam H.
    Bhown, Abhoyjit S.
    GHGT-11, 2013, 37 : 25 - 32
  • [25] Calcium looping sorbents for CO2 capture
    Erans, Maria
    Manovic, Vasilije
    Anthony, Edward J.
    APPLIED ENERGY, 2016, 180 : 722 - 742
  • [26] CHEMISORPTION OF CO, CO2 AND O-2 ON MO(100)
    FELTER, TE
    ESTRUP, PJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (07): : 939 - 939
  • [27] High-temperature CO2 capture by fly ash derived sorbents: Effect of scale-up on sorbents performance
    Fermoso, Javier
    Sanna, Aimaro
    CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [28] FT-IR study on CO2 adsorbed species of CO2 sorbents
    Jhulimar M. Celedonio
    Jong Hyun Park
    Young Soo Ko
    Research on Chemical Intermediates, 2016, 42 : 141 - 154
  • [29] A study on the effect of the amine structure in CO2 dry sorbents on CO2 capture
    Park, Jong Hyun
    Celedonio, Jhulimar M.
    Seo, Hwimin
    Park, Yong Ki
    Ko, Young Soo
    CATALYSIS TODAY, 2016, 265 : 68 - 76
  • [30] FT-IR study on CO2 adsorbed species of CO2 sorbents
    Celedonio, Jhulimar M.
    Park, Jong Hyun
    Ko, Young Soo
    RESEARCH ON CHEMICAL INTERMEDIATES, 2016, 42 (01) : 141 - 154