EPIDEMIC SELF-SYNCHRONIZATION IN COMPLEX NETWORKS OF KURAMOTO OSCILLATORS

被引:4
|
作者
Scholtes, Ingo [1 ]
Botev, Jean [2 ]
Esch, Markus [2 ]
Sturm, Peter [1 ]
机构
[1] Univ Trier, Dept Comp Sci, D-54286 Trier, Germany
[2] Univ Luxembourg, Fac Sci Technol & Commun, L-1359 Luxembourg, Luxembourg
来源
ADVANCES IN COMPLEX SYSTEMS | 2010年 / 13卷 / 01期
关键词
Nonlinear oscillators; Kuramoto model; complex communication networks; POPULATIONS; ONSET; MODEL;
D O I
10.1142/S0219525910002426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we present and evaluate an epidemic scheme for the synchronization of coupled Kuramoto oscillators in communication networks. It addresses the problem of efficiently providing globally synchronous time epochs in complex, dynamic Peer-to-Peer network topologies. Rather than the usual model of continuously coupled nodes, a discretized version with sporadic message-based couplings to nearest neighbors is considered. This article empirically studies the emergence of coherent oscillator states for different network topologies, coupling functions, and sporadic coupling intensities. It further investigates the protocol's minimum bandwidth requirements in small-world network topologies. Synchronization resilience under the effect of random perturbations is studied for two coupling variations. Finally, the potential utilization of the scheme for a local inference of global network topology characteristics is discussed.
引用
收藏
页码:33 / 58
页数:26
相关论文
共 50 条
  • [21] INTEGER RATIO SELF-SYNCHRONIZATION IN PAIRS OF LIMIT CYCLE OSCILLATORS
    Bhaskar, Aditya
    Shayak, B.
    Zehnder, Alan T.
    Rand, Richard H.
    PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 11, 2021,
  • [22] SELF-SYNCHRONIZATION IN A SYSTEM OF NONLINEAR VAN DER POL OSCILLATORS
    Knyaz, I. A.
    Vitrenko, A. N.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2010, 2 (04) : 109 - 116
  • [23] On Exponential Synchronization of Kuramoto Oscillators
    Chopra, Nikhil
    Spong, Mark W.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 353 - 357
  • [24] Complete synchronization of Kuramoto oscillators
    Lunze, Jan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (42)
  • [25] SYNCHRONIZATION ANALYSIS OF KURAMOTO OSCILLATORS
    Dong, Jiu-Gang
    Xue, Xiaoping
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (02) : 465 - 480
  • [26] Synchronization of oscillators in complex networks
    Louis M. Pecora
    Pramana, 2008, 70 : 1175 - 1198
  • [27] Synchronization of oscillators in complex networks
    Pecora, Louis M.
    PRAMANA-JOURNAL OF PHYSICS, 2008, 70 (06): : 1175 - 1198
  • [28] SYNCHRONIZATION AND TRANSIENT STABILITY IN POWER NETWORKS AND NONUNIFORM KURAMOTO OSCILLATORS
    Doerfler, Florian
    Bullo, Francesco
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (03) : 1616 - 1642
  • [29] Stability Conditions for Cluster Synchronization in Networks of Heterogeneous Kuramoto Oscillators
    Menara, Tommaso
    Baggio, Giacomo
    Bassett, Danielle S.
    Pasqualetti, Fabio
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (01): : 302 - 314
  • [30] Onset of synchronization of Kuramoto oscillators in scale-free networks
    Peron, Thomas
    de Resende, Bruno Messias F.
    Mata, Angelica S.
    Rodrigues, Francisco A.
    Moreno, Yamir
    PHYSICAL REVIEW E, 2019, 100 (04)