Quantifying similarity of pore-geometry in nanoporous materials

被引:126
|
作者
Lee, Yongjin [1 ,2 ]
Barthel, Senja D. [1 ]
Dlotko, Pawel [3 ]
Moosavi, S. Mohamad [1 ]
Hess, Kathryn [4 ]
Smit, Berend [1 ,2 ]
机构
[1] EPFL, Inst Sci & Ingenierie Chim, Rue Ind 17, CH-1951 Sion, Switzerland
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Inria Saclay Ile de France, DataShape Grp, F-91120 Palaiseau, France
[4] Ecole Polytech Fed Lausanne, SV BMI UPHESS, CH-1015 Lausanne, Switzerland
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
METAL-ORGANIC FRAMEWORKS; STORAGE MATERIALS; HYDROGEN STORAGE; GAS-STORAGE; COMPUTATION; TOPOLOGY; DESIGN; RADII; VAN;
D O I
10.1038/ncomms15396
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In most applications of nanoporous materials the pore structure is as important as the chemical composition as a determinant of performance. For example, one can alter performance in applications like carbon capture or methane storage by orders of magnitude by only modifying the pore structure. For these applications it is therefore important to identify the optimal pore geometry and use this information to find similar materials. However, the mathematical language and tools to identify materials with similar pore structures, but different composition, has been lacking. We develop a pore recognition approach to quantify similarity of pore structures and classify them using topological data analysis. This allows us to identify materials with similar pore geometries, and to screen for materials that are similar to given top-performing structures. Using methane storage as a case study, we also show that materials can be divided into topologically distinct classes requiring different optimization strategies.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Lysozyme adsorption onto mesoporous materials: Effect of pore geometry and stability of adsorbents
    Vinu, Ajayan
    Miyahara, Masahiko
    Hossain, Kazi Zakir
    Takahashi, Motoi
    Balasubramanian, Veerappan Vaithilingam
    Mori, Toshiyuki
    Ariga, Katsuhiko
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (03) : 828 - 832
  • [42] A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes
    Huang, Jingsong
    Sumpter, Bobby G.
    Meunier, Vincent
    CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (22) : 6614 - 6626
  • [43] ANALYTICAL STUDY OF EFFECTS OF PORE GEOMETRY ON TENSILE-STRENGTH OF POROUS MATERIALS
    GRIFFITHS, TJ
    DAVIES, R
    BASSETT, MB
    POWDER METALLURGY, 1979, 22 (03) : 119 - 123
  • [44] Elucidating the Importance of Pore Structure in Determining the Double-Layer Capacitance of Nanoporous Carbon Materials
    Zuliani, Jocelyn E.
    Jia, Charles Q.
    Kirk, Donald W.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (38): : 20555 - 20566
  • [45] Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials
    Huang, Cong-Liang
    Lin, Zi-Zhen
    Luo, Dan-Chen
    Huang, Zun
    PHYSICS LETTERS A, 2016, 380 (38) : 3103 - 3106
  • [46] Quantum Effect-Mediated Hydrogen Isotope Mixture Separation in Slit Pore Nanoporous Materials
    Wang, Yang
    Bhatia, Suresh K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33): : 14953 - 14962
  • [47] Quantifying similarity between motifs
    Gupta, Shobhit
    Stamatoyannopoulos, John A.
    Bailey, Timothy L.
    Noble, William Stafford
    GENOME BIOLOGY, 2007, 8 (02)
  • [48] Characterization of pore geometry
    Císlerová, M
    MODELLING OF TRANSPORT PROCESSES IN SOILS: AT VARIOUS SCALES IN TIME AND SPACE, 1999, : 103 - 117
  • [49] Towards quantifying plasmid similarity
    Matlock, William
    Shaw, Liam P.
    Sheppard, Samuel K.
    Feil, Edward
    MICROBIAL GENOMICS, 2024, 10 (09):
  • [50] Quantifying the Similarity of BPMN Processes
    Salaun, Gwen
    2022 29TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC, 2022, : 377 - 386