Quantifying similarity of pore-geometry in nanoporous materials

被引:126
|
作者
Lee, Yongjin [1 ,2 ]
Barthel, Senja D. [1 ]
Dlotko, Pawel [3 ]
Moosavi, S. Mohamad [1 ]
Hess, Kathryn [4 ]
Smit, Berend [1 ,2 ]
机构
[1] EPFL, Inst Sci & Ingenierie Chim, Rue Ind 17, CH-1951 Sion, Switzerland
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Inria Saclay Ile de France, DataShape Grp, F-91120 Palaiseau, France
[4] Ecole Polytech Fed Lausanne, SV BMI UPHESS, CH-1015 Lausanne, Switzerland
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
METAL-ORGANIC FRAMEWORKS; STORAGE MATERIALS; HYDROGEN STORAGE; GAS-STORAGE; COMPUTATION; TOPOLOGY; DESIGN; RADII; VAN;
D O I
10.1038/ncomms15396
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In most applications of nanoporous materials the pore structure is as important as the chemical composition as a determinant of performance. For example, one can alter performance in applications like carbon capture or methane storage by orders of magnitude by only modifying the pore structure. For these applications it is therefore important to identify the optimal pore geometry and use this information to find similar materials. However, the mathematical language and tools to identify materials with similar pore structures, but different composition, has been lacking. We develop a pore recognition approach to quantify similarity of pore structures and classify them using topological data analysis. This allows us to identify materials with similar pore geometries, and to screen for materials that are similar to given top-performing structures. Using methane storage as a case study, we also show that materials can be divided into topologically distinct classes requiring different optimization strategies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Quantifying similarity of pore-geometry in nanoporous materials
    Yongjin Lee
    Senja D. Barthel
    Paweł Dłotko
    S. Mohamad Moosavi
    Kathryn Hess
    Berend Smit
    Nature Communications, 8
  • [2] Bayesian linearized rock-physics AVO inversion for petrophysical and pore-geometry parameters in carbonate reservoirs (Running title: Pore-geometry AVO inversion)
    Guo Q.
    Luo C.
    Grana D.
    Geophysics, 2023, 88 (05)
  • [3] High pressure effect in nanoporous carbon materials: Effects of pore geometry
    Long, Yun
    Sliwinska-Bartkowiak, Malgorzata
    Drozdowski, Henryk
    Kempinski, Mateusz
    Phillips, Katherine A.
    Palmer, Jeremy C.
    Gubbins, Keith E.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 437 : 33 - 41
  • [4] Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes
    Zhang, Xiangyu
    Cui, Jing
    Zhang, Kexin
    Wu, Jiasheng
    Lee, Yongjin
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (11) : 4636 - 4644
  • [5] Determination of pore accessibility in disordered nanoporous materials
    Nguyen, Thanh X.
    Bhatia, Suresh K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (05): : 2212 - 2222
  • [6] Molecular pore network models of nanoporous materials
    Sahimi, M
    Tsotsis, TT
    PHYSICA B-CONDENSED MATTER, 2003, 338 (1-4) : 291 - 297
  • [7] Characterizing the pore size distribution in nanoporous materials
    Hill, Anita J.
    Pas, Steven J.
    Hill, Matthew R.
    Freeman, Benny D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236
  • [8] Characterisation of pore structures in nanoporous materials for advanced bionanotechnology
    Heo, K.
    Yoon, J.
    Jin, K. S.
    Jin, S.
    Ree, M.
    IEE PROCEEDINGS-NANOBIOTECHNOLOGY, 2006, 153 (04): : 121 - 128
  • [9] Spherical nanoporous materials with multiple pore sizes.
    Landry, CC
    Gallis, KW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U504 - U504
  • [10] CONSIDERATIONS ON PORE GEOMETRY OF SOUND ABSORBING MATERIALS
    TOMULESCU, R
    ACUSTICA, 1975, 33 (05): : 336 - 339