Selecting the Top-k Discriminative Features Using Principal Component Analysis

被引:0
|
作者
Kane, Aminata [1 ]
Shiri, Nematollaah [1 ]
机构
[1] Concordia Univ, Comp Sci & Software Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
feature selection; principal component analysis; multivariate time series; INFORMATION;
D O I
10.1109/ICDMW.2016.95
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection is important for dimensionality reduction, analysis, and pattern discovery applications. We consider multivariate time series data and propose an unsupervised learning technique to identify the top-k discriminative features. The proposed technique uses statistics drawn from the Principal Component Analysis (PCA) of the input data to leverage the relative importance of the principal components along with the coefficients within the principal directions of the data to uncover the ranking of the features. We conduct numerous experiments using various benchmark datasets to study the performance of the proposed technique in terms of the discriminant power of the selected features and its ability to minimize the original data reconstruction error. Compared to major existing techniques, our results indicate increased accuracy and efficiency. We also show that our technique yields improved classification accuracy.
引用
收藏
页码:639 / 646
页数:8
相关论文
共 50 条
  • [21] Online selecting discriminative tracking features using particle filter
    Wang, JY
    Chen, XL
    Gao, W
    2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 1037 - 1042
  • [22] Top-k sentiment analysis over spatiotemporal data
    Almaslukh, Abdulaziz
    Almaalwy, Aisha
    Allheeib, Nasser
    Alajaji, Abdulaziz
    Almukaynizi, Mohammed
    Alabdulkarim, Yazeed
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [23] Top-k sentiment analysis over spatiotemporal data
    Almaslukh, Abdulaziz
    Almaalwy, Aisha
    Allheeib, Nasser
    Alajaji, Abdulaziz
    Almukaynizi, Mohammed
    Alabdulkarim, Yazeed
    PeerJ Computer Science, 2024, 10
  • [24] Loss Functions for Top-k Error: Analysis and Insights
    Lapin, Maksim
    Hein, Matthias
    Schiele, Bernt
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1468 - 1477
  • [25] Top-k aggressors sets in delay noise analysis
    Gandikota, Ravikishore
    Chopra, Kaviraj
    Blaauw, David
    Sylvester, Dennis
    Becer, Murat
    2007 44TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, VOLS 1 AND 2, 2007, : 174 - +
  • [26] Using Conjunctions for Faster Disjunctive Top-k Queries
    Siedlaczek, Michal
    Mallia, Antonio
    Suel, Torsten
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 917 - 927
  • [27] Fast Action Detection via Discriminative Random Forest Voting and Top-K Subvolume Search
    Yu, Gang
    Goussies, Norberto A.
    Yuan, Junsong
    Liu, Zicheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2011, 13 (03) : 507 - 517
  • [28] Selecting and visualizing the spectral variability relevant for sample classification using principal component analysis
    Robledo, José I.
    Cuestas, Eloisa
    Journal of Analytical Atomic Spectrometry, 2020, 35 (07): : 1435 - 1440
  • [29] Selecting Signature Optical Emission Spectroscopy Variables Using Sparse Principal Component Analysis
    Ma, Beibei
    McLoone, Sean
    Ringwood, John
    Macgearailt, Niall
    2008 11TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY: ICCIT 2008, VOLS 1 AND 2, 2008, : 21 - +
  • [30] Selecting the number of components in principal component analysis using cross-validation approximations
    Josse, Julie
    Husson, Francois
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1869 - 1879