Hypergeometric type q-difference equations:: Rodrigues type representation for the second kind solution

被引:10
|
作者
Area, I
Godoy, E [1 ]
Ronveaux, A
Zarzo, A
机构
[1] Univ Vigo, Dept Matemat Aplicada 2, ETS Ingn Ind, Vigo 36200, Spain
[2] Univ Vigo, Dept Matemat Aplicada 2, ETS Telecommun, Vigo 36200, Spain
[3] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
[4] Univ Granada, Fac Ciencias, Inst Carlos Fis Teor & Comp, Granada, Spain
[5] Univ Politecn Madrid, Dept Matemat Aplicada, ETS Ingn Ind, Madrid, Spain
关键词
orthogonal polynomials; functions of the second kind; second-order q-difference equations of hypergeometric type;
D O I
10.1016/j.cam.2004.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Rodrigues type representation for the second kind solution of a second-order q-difference equation of hypergeometric type is given. This representation contains some q-extensions of integrals related with relevant special functions. For these integrals, a general recurrence relation, which only involves the coefficients of the q-difference equation, is also presented. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 50 条
  • [31] ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS
    Chen, Min Feng
    Gao, Zong Sheng
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 30 (04): : 447 - 456
  • [32] REPRESENTATION-THEORY APPROACH TO THE POLYNOMIAL SOLUTION OF Q-DIFFERENCE EQUATIONS - U(Q)(SL(3)) AND BEYOND
    DOBREV, VK
    TRUINI, P
    BIEDENHARN, LC
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (11) : 6058 - 6075
  • [33] Second order q-difference equations solvable by factorization method
    Dobrogowska, Alina
    Odzijewicz, Anatol
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) : 319 - 346
  • [34] Asymptotics of q-difference equations
    Garoufalidis, Stavros
    Geronimo, Jeffrey S.
    PRIMES AND KNOTS, 2006, 416 : 83 - 114
  • [35] NONLINEAR Q-DIFFERENCE EQUATIONS
    STEPHENS, CF
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (09) : 874 - 874
  • [36] Integral solutions of hypergeometric q-difference systems with |q|=1
    Nishizawa, M
    Ueno, K
    PHYSICS AND COMBINATORICS 1999, 2001, : 273 - 286
  • [37] q-difference equations.
    Jackson, FH
    AMERICAN JOURNAL OF MATHEMATICS, 1910, 32 : 305 - 314
  • [38] Fractional q-Difference Equations
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 223 - 270
  • [39] Linear q-difference equations
    Abu Risha, M. H.
    Annaby, M. H.
    Ismail, M. E. H.
    Mansour, Z. S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (04): : 481 - 494
  • [40] ON PROPERTIES OF q-DIFFERENCE EQUATIONS
    Zheng Xiumin
    Chen Zongxuan
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 724 - 734