A new trust region method for nonsmooth nonconvex optimization

被引:12
|
作者
Hoseini, N. [1 ]
Nobakhtian, S. [1 ,2 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Nonlinear programming; nonsmoothness; Goldstein epsilon-subdifferential; trust region methods; global convergence; GLOBAL CONVERGENCE; BUNDLE METHOD; UNCONSTRAINED MINIMIZATION; ALGORITHM;
D O I
10.1080/02331934.2018.1470175
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a nonsmooth trust region algorithm for nonconvex optimization problems. The algorithm is based on notion of the Goldstein epsilon-subdifferential, which are subgradients computed in some neighbourhoods of a point. The proposed method contains a new quadratic model of the classical trust region method, in which the gradient vector is replaced by a quasisecant. Then we apply a combined approach based on the Cauchy point and the dog-leg methods in order to solve the obtained model. The global convergence is established under some suitable assumptions. Finally, the algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems. Numerical results on some small-scale and large-scale nonsmooth optimization test problems illustrate the efficiency of the proposed algorithm in the practical computation.
引用
收藏
页码:1265 / 1286
页数:22
相关论文
共 50 条
  • [1] A TRUST-REGION METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION
    Chen, Ziang
    Milzarek, Andre
    Wen, Zaiwen
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (04): : 683 - 716
  • [2] TRUST REGION METHOD IN NONSMOOTH OPTIMIZATION
    TERPOLILLI, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (07): : 945 - 948
  • [3] A trust region method for nonsmooth convex optimization
    Sagara, Nobuko
    Fukushima, Masao
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (02) : 171 - 180
  • [4] Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm
    Monjezi, N. Hoseini
    Nobakhtian, S.
    Pouryayevali, M. R.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (03) : 871 - 902
  • [5] A new trust region method for nonsmooth equations
    Yang, YF
    ANZIAM JOURNAL, 2003, 44 : 595 - 607
  • [6] Subgradient Method for Nonconvex Nonsmooth Optimization
    A. M. Bagirov
    L. Jin
    N. Karmitsa
    A. Al Nuaimat
    N. Sultanova
    Journal of Optimization Theory and Applications, 2013, 157 : 416 - 435
  • [7] Subgradient Method for Nonconvex Nonsmooth Optimization
    Bagirov, A. M.
    Jin, L.
    Karmitsa, N.
    Al Nuaimat, A.
    Sultanova, N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 416 - 435
  • [8] A new nonmonotone line search method for nonsmooth nonconvex optimization
    Akbari, Z.
    OPTIMIZATION, 2024, 73 (02) : 429 - 441
  • [9] A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization
    Ouyang, Wenqing
    Milzarek, Andre
    MATHEMATICAL PROGRAMMING, 2024,