Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization

被引:7
|
作者
Hafsa, Omar Anza [1 ]
Mandallena, Jean Philippe [1 ]
Michaille, Gerard [1 ]
机构
[1] Univ Nimes, Lab MIPA, Site Carmes,Pl Gabriel Peri, F-30021 Nimes, France
关键词
Convergence of reaction-diffusion equations; stochastic homogenization; comparison principle;
D O I
10.3233/ASY-191531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a convergence theorem for a class of nonlinear reaction-diffusion equations when the diffusion term is the subdifferential of a convex functional in a class of functionals of the calculus of variations equipped with the Moscoconvergence. The reaction term, which is not globally Lipschitz with respect to the state variable, gives rise to bounded solutions, and cover a wide variety of models. As a consequence we prove a homogenization theorem for this class under a stochastic homogenization framework.
引用
收藏
页码:169 / 221
页数:53
相关论文
共 50 条
  • [31] NOISE AND STABILITY IN REACTION-DIFFUSION EQUATIONS
    Lv, Guangying
    Wei, Jinlong
    Zou, Guang-an
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, 12 (01) : 147 - 168
  • [32] Ulam-Hyers-Mittag-Leffler Stability for a Class of Nonlinear Fractional Reaction-Diffusion Equations with Delay
    Shah, Rahim
    Irshad, Natasha
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (01)
  • [33] Spatially stochastic reaction in stationary Reaction-Diffusion equations
    Bellini, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (12): : 1429 - 1432
  • [34] Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations
    Needham, DJ
    Barnes, AN
    NONLINEARITY, 1999, 12 (01) : 41 - 58
  • [35] Nonlinear Stability for Reaction-Diffusion Models
    Mulone, G.
    NEW TRENDS IN FLUID AND SOLID MODELS, 2010, : 91 - 101
  • [36] Random attractors for a class of stochastic reaction-diffusion equations on RN with multiplicative noise
    Li, Bowen
    Jiang, Yong
    Li, Xiaojun
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2019, 1 (04)
  • [37] DETERMINISTIC CONTROL OF STOCHASTIC REACTION-DIFFUSION EQUATIONS
    Stannat, Wilhelm
    Wessels, Lukas
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (04): : 701 - 722
  • [38] Macroscopic reduction for stochastic reaction-diffusion equations
    Wang, W. (anthony.roberts@adelaide.edu.au), 1600, Oxford University Press (78):
  • [39] Macroscopic reduction for stochastic reaction-diffusion equations
    Wang, W.
    Roberts, A. J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (06) : 1237 - 1264
  • [40] Asymptotic Behavior of Stochastic Reaction-Diffusion Equations
    Wen, Hao
    Wang, Yuanjing
    Liu, Guangyuan
    Liu, Dawei
    MATHEMATICS, 2024, 12 (09)