Bilinear dynamic mode decomposition for quantum control

被引:18
|
作者
Goldschmidt, Andy [1 ]
Kaiser, E. [2 ]
DuBois, J. L. [3 ]
Brunton, S. L. [2 ]
Kutz, J. N. [4 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
dynamic mode decomposition; quantum control; bilinear control; Koopman operators;
D O I
10.1088/1367-2630/abe972
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Data-driven methods for establishing quantum optimal control (QOC) using time-dependent control pulses tailored to specific quantum dynamical systems and desired control objectives are critical for many emerging quantum technologies. We develop a data-driven regression procedure, bilinear dynamic mode decomposition (biDMD), that leverages time-series measurements to establish quantum system identification for QOC. The biDMD optimization framework is a physics-informed regression that makes use of the known underlying Hamiltonian structure. Further, the biDMD can be modified to model both fast and slow sampling of control signals, the latter by way of stroboscopic sampling strategies. The biDMD method provides a flexible, interpretable, and adaptive regression framework for real-time, online implementation in quantum systems. Further, the method has strong theoretical connections to Koopman theory, which approximates nonlinear dynamics with linear operators. In comparison with many machine learning paradigms minimal data is needed to construct a biDMD model, and the model is easily updated as new data is collected. We demonstrate the efficacy and performance of the approach on a number of representative quantum systems, showing that it also matches experimental results. Video Abstract Video Abstract: Bilinear dynamic mode decomposition for quantum control
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Tracking Distributed Parameters System Dynamics with Recursive Dynamic Mode Decomposition with Control
    Hamdan, Taleb Bou
    Mercere, Guillaume
    Dairay, Thibault
    Meunier, Raphael
    Tremblay, Pascal
    Coirault, Patrick
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (01): : 37 - 64
  • [42] Characterizing the Predictive Accuracy of Dynamic Mode Decomposition for Data-Driven Control
    Lu, Qiugang
    Shin, Sungho
    Zavala, Victor M.
    IFAC PAPERSONLINE, 2020, 53 (02): : 11289 - 11294
  • [43] Linear Control of a Nonlinear Aerospace System via Extended Dynamic Mode Decomposition
    Cartocci, Nicholas
    Monarca, Agnese
    Costante, Gabriele
    Fravolini, Mario Luca
    Dogan, K. Merve
    Yucelen, Tansel
    AIAA SCITECH 2022 FORUM, 2022,
  • [44] An improved mode time coefficient for dynamic mode decomposition
    Xu, Lianchao
    Liu, Zhengxian
    Li, Xiaojian
    Zhao, Ming
    Zhao, Yijia
    PHYSICS OF FLUIDS, 2023, 35 (10)
  • [45] An error analysis of the dynamic mode decomposition
    Daniel Duke
    Julio Soria
    Damon Honnery
    Experiments in Fluids, 2012, 52 : 529 - 542
  • [46] Dynamic mode decomposition with core sketch
    Ahmed, Shady E.
    Dabaghian, Pedram H.
    San, Omer
    Bistrian, Diana A.
    Navon, Ionel M.
    PHYSICS OF FLUIDS, 2022, 34 (06)
  • [47] Dynamic Mode Decomposition for Background Modeling
    Kutz, J. N.
    Erichson, N. B.
    Askham, T.
    Pendergrass, S.
    Brunton, S. L.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1862 - 1870
  • [48] Higher Order Dynamic Mode Decomposition
    Le Clainche, Soledad
    Vega, Jose M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (02): : 882 - 925
  • [49] Dynamic Mode Decomposition and Its Variants
    Schmid, Peter J.
    ANNUAL REVIEW OF FLUID MECHANICS, 2022, 54 : 225 - 254
  • [50] An error analysis of the dynamic mode decomposition
    Duke, Daniel
    Soria, Julio
    Honnery, Damon
    EXPERIMENTS IN FLUIDS, 2012, 52 (02) : 529 - 542