Functional traits provide new insight into recovery and succession at deep-sea hydrothermal vents

被引:12
|
作者
Dykman, Lauren N. [1 ]
Beaulieu, Stace E. [1 ]
Mills, Susan W. [1 ]
Solow, Andrew R. [1 ]
Mullineaux, Lauren S. [1 ]
机构
[1] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
关键词
benthic invertebrates; disturbance; functional traits; hydrothermal vents; recovery; succession; EAST PACIFIC RISE; GENERAL COEFFICIENT; DIVERSITY; COMMUNITY; MANAGEMENT; MACROINVERTEBRATES; 9-DEGREES-50'N; CONTINGENCY; MECHANISMS; SIMILARITY;
D O I
10.1002/ecy.3418
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep-sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9 degrees 50 ' N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems. We focused on functional traits including body size, external protection, provision of habitat (foundation species), and trophic mode to understand how the unique nutritional and stress conditions influence community composition. In contrast to established theory, large, fast-growing, structure-forming organisms colonized rapidly at vents, while small, asexually reproducing organisms were not abundant until later in succession. Species in early succession had high external protection, as expected in the harsh thermal and chemical conditions after the eruption. Changes in traits related to feeding ecology and dispersal potential over succession agreed with expectations from other ecosystems. We also tracked functional diversity metrics over time to see how they compared to species diversity. While species diversity peaked at 8 yr post-eruption, functional diversity was continuing to increase at 11 yr. Our results indicate that deep-sea hydrothermal vents have distinct successional dynamics due to the high stress and high nutrient conditions in early succession. These findings highlight the importance of extending theory to new systems and considering function to allow comparison between ecosystems with different species and environmental conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Composition of a one-year-old Riftia pachyptila community following a clearance experiment:: Insight to succession patterns at deep-sea hydrothermal vents
    Govenar, B
    Freeman, M
    Bergquist, DC
    Johnson, GA
    Fisher, CR
    BIOLOGICAL BULLETIN, 2004, 207 (03): : 177 - 182
  • [32] Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific
    Mino, Sayaka
    Makita, Hiroko
    Toki, Tomohiro
    Miyazaki, Junichi
    Kato, Shingo
    Watanabe, Hiromi
    Imachi, Hiroyuki
    Watsuji, Tomo-o
    Nunoura, Takuro
    Kojima, Shigeaki
    Sawabe, Tomoo
    Takai, Ken
    Nakagawa, Satoshi
    FRONTIERS IN MICROBIOLOGY, 2013, 4
  • [33] Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents
    Adam, Nicole
    Perner, Mirjam
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [34] Archaeal diversity and community development in deep-sea hydrothermal vents
    Takai, Ken
    Nakamura, Kentaro
    CURRENT OPINION IN MICROBIOLOGY, 2011, 14 (03) : 282 - 291
  • [35] Recent progress in the microbiology of deep-sea hydrothermal vents and seeps
    Nelson, DC
    CAHIERS DE BIOLOGIE MARINE, 1998, 39 (3-4): : 373 - 378
  • [36] Novel bacterial exopolysaccharides from deep-sea hydrothermal vents
    Groupe EVEN, Ploudaniel, France
    Carbohydr Polym, 4 (237-242):
  • [37] Novel bacterial exopolysaccharides from deep-sea hydrothermal vents
    Rougeaux, H
    Pichon, R
    Kervarec, N
    Raguenes, GHC
    Guezennec, JG
    CARBOHYDRATE POLYMERS, 1996, 31 (04) : 237 - 242
  • [38] Virus diversity and interactions with hosts in deep-sea hydrothermal vents
    Cheng, Ruolin
    Li, Xiaofeng
    Jiang, Lijing
    Gong, Linfeng
    Geslin, Claire
    Shao, Zongze
    MICROBIOME, 2022, 10 (01)
  • [39] Virus diversity and interactions with hosts in deep-sea hydrothermal vents
    Ruolin Cheng
    Xiaofeng Li
    Lijing Jiang
    Linfeng Gong
    Claire Geslin
    Zongze Shao
    Microbiome, 10
  • [40] Exploring the Ecology of Deep-Sea Hydrothermal Vents in a Metacommunity Framework
    Mullineaux, Lauren S.
    Metaxas, Anna
    Beaulieu, Stace E.
    Bright, Monika
    Gollner, Sabine
    Grupe, Benjamin M.
    Herrera, Santiago
    Kellner, Julie B.
    Levin, Lisa A.
    Mitarai, Satoshi
    Neubert, Michael G.
    Thurnherr, Andreas M.
    Tunnicliffe, Verena
    Watanabe, Hiromi K.
    Won, Yong-Jin
    FRONTIERS IN MARINE SCIENCE, 2018, 5