Parameter setting in parallel genetic algorithms

被引:0
|
作者
Cantu-Paz, Erick [1 ]
机构
[1] Yahoo Inc, Sunnyvale, CA 94089 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parallel genetic algorithms (GAs) have numerous parameters that affect their efficiency and accuracy. Traditionally, these parameters have been studied using empirical studies whose generality and limitations are difficult to assess. This chapter reviews existing theoretical models that predict the effects of the parameters. The models are used to examine the effect of communication topologies, migration rates, population sizing, and the choice of migrants and the individuals they replace in the receiving populations. The models should help practitioners make informed decisions about the setting of parameters of parallel GAs.
引用
收藏
页码:259 / 276
页数:18
相关论文
共 50 条
  • [41] APPLICATION OF GENETIC ALGORITHMS FOR ROBUST PARAMETER OPTIMIZATION
    Belavendram, N.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2010, 2 : 211 - 220
  • [42] Application of genetic algorithms for aerodynamic parameter estimation
    Qian, Wei-Qi
    Wang, Qing
    Wang, Wen-Zheng
    He, Kai-Feng
    Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2003, 21 (02):
  • [43] Parallel genetic algorithm with the dynamic control parameter
    Lis, J
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 324 - 329
  • [44] Analysis on the island model parallel genetic algorithms for the genetic drifts
    Niwa, T
    Tanaka, M
    SIMULATED EVOLUTION AND LEARNING, 1999, 1585 : 349 - 356
  • [45] Learn Reversi using Parallel Genetic Algorithms
    Paraschiv, Daniel
    Vasiliu, Laurentiu
    ADVANCES IN INTELLIGENT AND DISTRIBUTED COMPUTING, 2008, 78 : 295 - 301
  • [46] Parallel genetic algorithms on PARAM for conformation of biopolymers
    Sundararajan, V
    Kolaskar, AS
    3RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, PROCEEDINGS, 1996, : 22 - 26
  • [47] Performance analysis of parallel/distributed genetic algorithms
    Dvorak, V
    1ST AUSTRIAN-HUNGARIAN WORKSHOP ON DISTRIBUTED AND PARALLEL SYSTEMS, PROCEEDINGS, 1996, 1996 (09): : 219 - 220
  • [48] Optimization of Parallel Genetic Algorithms for nVidia GPUs
    Wahib, Mohamed
    Munawar, Asim
    Munetomo, Masaharu
    Akama, Kiyoshi
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 803 - 811
  • [49] A SIMD machine for massively parallel genetic algorithms
    Takahashi, Y
    Sano, M
    Inoue, T
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-III, PROCEEDINGS, 1997, : 915 - 923
  • [50] Massively parallel hardware architecture for genetic algorithms
    Nedjah, N
    Mourelle, LD
    DSD 2005: 8TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN, PROCEEDINGS, 2005, : 231 - 234