Active metasurfaces based on phase-change memory material digital metamolecules

被引:0
|
作者
Colburn, Shane [1 ]
Zhan, Alan [1 ]
Majumdar, Arka [1 ]
Deshmukh, Sanchit [2 ]
Pop, Eric [2 ]
Myers, Jason [3 ]
Frantz, Jesse [3 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] US Naval Res Lab, Washington, DC USA
关键词
SPATIAL LIGHT MODULATORS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tunable metasurfaces are a promising candidate for the next generation of spatial light modulators which will require higher refresh rates, smaller pixel sizes, and compact form factors. Phase-change memory materials present a unique platform for nonvolatile reconfigurable metasurfaces which could undergo phase transitions at MHz frequencies if actuated electrically, more than three orders of magnitude higher than refresh rates of existing commercial SLMs. While stable intermediate phases of GeSbTe (GST) exist which can be used for imparting differential phase shifts, the stochasticity of the material properties would limit the robustness of such a phase shifter, whereas the fully crystalline and amorphous states exhibit more consistent behavior. To overcome this, we design GST digital metamolecules comprising constituent meta-atoms which individually are in either the SET or RESET state, but which together form a tunable metamolecule with a set of robust phase shifts. We simulate active metasurface lenses based on these metamolecules, showing successful focusing, and demonstrate nano-patterning of a GST film with isolated nanoposts of material which could be electrically actuated, unlike counterparts which must be optically reconfigured.
引用
收藏
页码:5 / 8
页数:4
相关论文
共 50 条
  • [21] Broadband hyperbolic thermal metasurfaces based on the plasmonic phase-change material In3SbTe2
    Meng, Chong
    Zeng, Ying
    Lu, Dunzhu
    Zou, Hongyuan
    Wang, Junqin
    He, Qiang
    Yang, Xiaosheng
    Xu, Ming
    Miao, Xiangshui
    Zhang, Xinliang
    Li, Peining
    NANOSCALE, 2023, 15 (13) : 6306 - 6312
  • [22] Electrical tuning of phase-change antennas and metasurfaces
    Yifei Wang
    Patrick Landreman
    David Schoen
    Kye Okabe
    Ann Marshall
    Umberto Celano
    H.-S. Philip Wong
    Junghyun Park
    Mark L. Brongersma
    Nature Nanotechnology, 2021, 16 : 667 - 672
  • [23] Electrical tuning of phase-change antennas and metasurfaces
    Wang, Yifei
    Landreman, Patrick
    Schoen, David
    Okabe, Kye
    Marshall, Ann
    Celano, Umberto
    Wong, H. -S. Philip
    Park, Junghyun
    Brongersma, Mark L.
    NATURE NANOTECHNOLOGY, 2021, 16 (06) : 667 - +
  • [24] Phase-change Materials in Multifunctional Reconfigurable Metasurfaces
    Wu, Yuhao
    Campbell, Sawyer D.
    Whiting, Eric B.
    Kang, Lei
    Werner, Pingjuan L.
    Werner, Douglas H.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 819 - 820
  • [25] Dynamic Metasurfaces Using Phase-Change Chalcogenides
    Ding, Fei
    Yang, Yuanqing
    Bozhevolnyi, Sergey I.
    ADVANCED OPTICAL MATERIALS, 2019, 7 (14):
  • [26] Tunable metasurfaces enabled by phase-change materials
    Hafermann, Martin
    Semiconductors and Semimetals, 2024, 115 : 1 - 40
  • [27] Persistence of spin memory in a crystalline, insulating phase-change material
    Reindl, Johannes
    Volker, Hanno
    Breznay, Nicholas P.
    Wuttig, Matthias
    NPJ QUANTUM MATERIALS, 2019, 4 (1)
  • [28] Transformations in phase-change memory material during thermal cycling
    Sherchenkov, A. A.
    Kozyukhin, S. A.
    Gorshkova, E. V.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (01): : 26 - 33
  • [29] Phase-change metasurfaces for reconfigurable image processing
    Liu, Tingting
    Qiu, Jumin
    Yu, Tianbao
    Liu, Qiegen
    Li, Jie
    Xiao, Shuyuan
    APPLIED PHYSICS LETTERS, 2025, 126 (08)
  • [30] Novel phase-change material GeSbSe for application of three-level phase-change random access memory
    Gu, Yifeng
    Song, Zhitang
    Zhang, Ting
    Liu, Bo
    Feng, Songlin
    SOLID-STATE ELECTRONICS, 2010, 54 (04) : 443 - 446