Conductivity of quantum dot arrays

被引:5
|
作者
Reich, K., V [1 ]
机构
[1] Ioffe Inst, Ul Politekhnicheskaya 26, St Petersburg 194021, Russia
关键词
quantum dot; nanoparticle; quantum confinement; electron transport; metal-insulator transition; Coulomb interaction; Coulomb blockade; INSULATOR-METAL TRANSITION; CHARGE-TRANSPORT; COLLOIDAL NANOCRYSTALS; ELECTRICAL-TRANSPORT; DIELECTRIC-CONSTANT; COULOMB-BLOCKADE; CONTACT RADIUS; SEMICONDUCTOR; CARRIER; CDS;
D O I
10.3367/UFNe.2019.08.038649
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Arrays of quantum dots (QDs), i.e., semiconducting nanoparticles with typical sizes of 3-10 nm, have become more than merely an object of scientific research; they are now used in electronic devices. They are appealing mainly due to their optical properties, which depend on the QD size. Here, we consider the electronic properties of such arrays. These properties typically inherit the properties of bulk semiconductors, but in some cases can be substantially different due to the discreteness of sizes and a particular type of disorder in the array: the difference in size and spacing among QDs, as well as the number of donors. Notably, in such arrays, the metal-dielectric transition occurs at a much higher concentration of donors than in the bulk material. The nature of hopping conductivity in the dielectric phase strongly depends on the disorder type, quantum confinement effects, the Coulomb blockade, and the overlap integral of QDs.
引用
收藏
页码:994 / 1014
页数:21
相关论文
共 50 条
  • [31] Insulating state in open quantum dots and quantum dot arrays
    Ge, F.
    Prasad, C.
    Andresen, A.
    Bird, J.P.
    Ferry, D.K.
    Lin, L.-H.
    Aoki, N.
    Nakao, K.
    Ochiai, Y.
    Ishibashi, K.
    Aoyagi, Y.
    Sugano, T.
    Annalen der Physik (Leipzig), 2000, 9 (01): : 65 - 68
  • [32] Resonant peaks in quantum Hall transport in quantum dot arrays
    Aoki, N
    Lin, LH
    Onishi, D
    Kida, M
    Ishibashi, K
    Aoyagi, Y
    Bird, JP
    Ferry, DK
    Ochiai, Y
    PHYSICA B-CONDENSED MATTER, 2001, 298 (1-4) : 56 - 59
  • [33] Insulating state in open quantum dots and quantum dot arrays
    Ge, F
    Prasad, C
    Andresen, A
    Bird, JP
    Ferry, DK
    Lin, LH
    Aoki, N
    Nakao, K
    Ochiai, Y
    Ishibashi, K
    Aoyagi, Y
    Sugano, T
    ANNALEN DER PHYSIK, 2000, 9 (01) : 65 - 68
  • [34] Quantum well and quantum dot based detector arrays for infrared imaging
    Gunapala, S. D.
    Bandara, S. V.
    Ting, D. Z.
    Hill, C. J.
    Mumolo, I. M.
    Liu, J. K.
    Rafol, S. B.
    Blazejewski, E. R.
    Levan, P. D.
    Tidrow, M. Z.
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 919 - +
  • [35] Gating the conductivity of arrays of metallic quantum dots
    Remacle, F
    Beverly, KC
    Heath, JR
    Levine, RD
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (50): : 13892 - 13901
  • [36] Localization effect in mesoscopic quantum dots and quantum-dot arrays
    Lin, LH
    Aoki, N
    Nakao, K
    Andresen, A
    Prasad, C
    Ge, F
    Bird, JP
    Ferry, DK
    Ochiai, Y
    PHYSICAL REVIEW B, 1999, 60 (24) : R16299 - R16302
  • [37] Polarization splitting of the gain band in quantum wire and quantum dot arrays
    Slepyan, GY
    Maksimenko, SA
    Kalosha, VP
    Herrmann, J
    Ledentsov, NN
    Krestnikov, IL
    Alferov, ZI
    Bimberg, D
    PHYSICAL REVIEW B, 1999, 59 (19) : 12275 - 12278
  • [38] Quantum Well and Quantum Dot Based Detector Arrays for Infrared Imaging
    Gunapala, Sarath
    Bandara, Sumith
    Hill, Cory
    Ting, David
    Liu, John
    Mumolo, Jason
    Keo, Sam
    Blazejewski, Edward
    MATERIALS AND DEVICES FOR LASER REMOTE SENSING AND OPTICAL COMMUNICATION, 2008, 1076 : 133 - 145
  • [39] Electrochemically self-assembled quantum dot arrays
    Department of Electrical Engineering, University of Nebraska, Lincoln, NE 68588, United States
    不详
    J Electron Mater, 5 (515-519):
  • [40] Quantum dot based infrared focal plane Arrays
    Krishna, Sanjay
    Gunapala, Sarath D.
    Bandara, Sumith V.
    Hill, Cory
    Ting, David Z.
    PROCEEDINGS OF THE IEEE, 2007, 95 (09) : 1838 - 1852