A New Characterization of Bivariate Copulas

被引:25
|
作者
Durante, Fabrizio [2 ]
Jaworski, Piotr [1 ]
机构
[1] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
[2] Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, A-4040 Linz, Austria
关键词
Copula; Dini derivative; 2-increasing property; QUASI-COPULAS; DIAGONAL SECTIONS; CONSTRUCTIONS;
D O I
10.1080/03610920903151459
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new characterization of bivariate copulas is given by using the notion of Dini derivatives. Several examples illustrate the usefulness of this result.
引用
收藏
页码:2901 / 2912
页数:12
相关论文
共 50 条
  • [41] A streaming algorithm for bivariate empirical copulas
    Gregory, Alastair
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 135 : 56 - 69
  • [42] On bivariate Kumaraswamy-distorted copulas
    Samanthi, Ranadeera Gamage Madhuka
    Sepanski, Jungsywan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (08) : 2477 - 2495
  • [43] A note on the time evolution of bivariate copulas
    Ishimura, Naoyuki
    Yoshizawa, Yasukazu
    FOURTH INTERNATIONAL CONFERENCE FINANCIAL AND ACTUARIAL MATHEMATICS - FAM-2011, 2011, : 3 - 7
  • [44] A Generalization of the Archimedean Class of Bivariate Copulas
    Fabrizio Durante
    José Juan Quesada-Molina
    Carlo Sempi
    Annals of the Institute of Statistical Mathematics, 2007, 59 : 487 - 498
  • [45] Measures of tail asymmetry for bivariate copulas
    J. F. Rosco
    Harry Joe
    Statistical Papers, 2013, 54 : 709 - 726
  • [46] On tests of radial symmetry for bivariate copulas
    Christian Genest
    Johanna G. Nešlehová
    Statistical Papers, 2014, 55 : 1107 - 1119
  • [47] Derivatives and Fisher information of bivariate copulas
    Schepsmeier, Ulf
    Stoeber, Jakob
    STATISTICAL PAPERS, 2014, 55 (02) : 525 - 542
  • [48] A family of bivariate exponential distributions and their copulas
    Nair, N. Unnikrishnan
    Sankaran, P. G.
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2014, 76 (01): : 1 - 18
  • [49] Fitting bivariate loss distributions with copulas
    Klugman, SA
    Parsa, R
    INSURANCE MATHEMATICS & ECONOMICS, 1999, 24 (1-2): : 139 - 148
  • [50] A family of bivariate exponential distributions and their copulas
    Unnikrishnan Nair N.
    Sankaran P.G.
    Sankhya B, 2014, 76 (1) : 1 - 18