Stability results for properly quasi convex vector optimization problems

被引:7
|
作者
Li, X. B. [1 ,2 ]
Wang, Q. L. [2 ]
Lin, Z. [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 630044, Peoples R China
[2] Chongqing Jiaotong Univ, Coll Sci, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
stability analysis; vector optimization problems; efficiency; Painleve-Kuratowski convergence; proper quasi convexity; 90C31; 90C29; 49K40; EPSILON-VARIATIONAL PRINCIPLE; CONVERGENCE;
D O I
10.1080/02331934.2013.860529
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we discuss the stability of the sets of (weak) minimal points and (weak) efficient points of vector optimization problems. Assuming that the objective functions are (strictly) properly quasi convex, and the data ofthe approximate problems converges to the data of the original problems in the sense of Painleve-Kuratowski, we establish the Painleve-Kuratowski set convergence of the sets of (weak) minimal points and (weak) efficient points of the approximate problems to the corresponding ones of original problem. Our main results improve and extend the results of the recent papers.
引用
收藏
页码:1329 / 1347
页数:19
相关论文
共 50 条