Comparison of Different Machine and Deep Learning Techniques to Predict Air Quality Index: A Case of Kocaeli Province

被引:1
|
作者
Bilen, Zeynep [1 ]
Bozkurt, Ferhat [1 ]
机构
[1] Ataturk Univ, Bilgisayar Muhendisligi Bolumu, Erzurum, Turkey
关键词
machine learning; deep learning; classification; prediction; air pollution; air quality index;
D O I
10.1109/SIU53274.2021.9477936
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Air pollution is increasing day by day with the increase of urbanization and industrialization. Increased air pollution adversely affects our health. Air quality index is used to determine to what extent it affects our health. The air quality index is used to classify the quality of the air. In this study, Kocaeli province, where urbanization and industrialization is high, is selected. The data used in the study has been obtained from the Online Monitoring Center established by the Ministry of Environment and Urbanization to monitor air quality. Air quality index was calculated with the report containing the measurement values of the pollutant gases belonging to Kocaeli, and labeled by separating them into their classes. In order to predict the air quality on the prepared data set, the comparison of different machine and deep learning techniques is conducted. These techniques are k-Nearest Neighbor, Naive Bayes, Logistic Regression, Decision Trees, Random Forest, Support Vector Machines (SVM), Recurrent Neural Networks (RNN), and Long-Short Term Memory (LSTM). According to experimental results, by considering the accuracy and AUC parameter used in the performance evaluation of the classification techniques, the highest accuracy value was observed as 94% with the Decision Trees and the highest AUC value was reported as 98% with the LSTM model.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Evaluation of Machine Learning Algorithms for Air Quality Index (AQI) Prediction
    Pant, Alka
    Sharma, Sanjay
    Pant, Kamal
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2023, 16 (02): : 229 - 242
  • [42] Comparative Analysis of Machine Learning Algorithms for Predicting Air Quality Index
    Kekulanadara, K.M.O.V.K.
    Kumara, B.T.G.S.
    Kuhaneswaran, Banujan
    2021 From Innovation To Impact, FITI 2021, 2021,
  • [43] Air Quality Index and Air Pollutant Concentration Prediction Based on Machine Learning Algorithms
    Liu, Huixiang
    Li, Qing
    Yu, Dongbing
    Gu, Yu
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [44] Machine learning-based prediction of air quality index and air quality grade: a comparative analysis
    Aram, S. A.
    Nketiah, E. A.
    Saalidong, B. M.
    Wang, H.
    Afitiri, A. -R.
    Akoto, A. B.
    Lartey, P. O.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (02) : 1345 - 1360
  • [45] Machine learning-based prediction of air quality index and air quality grade: a comparative analysis
    S. A. Aram
    E. A. Nketiah
    B. M. Saalidong
    H. Wang
    A.-R. Afitiri
    A. B. Akoto
    P. O. Lartey
    International Journal of Environmental Science and Technology, 2024, 21 : 1345 - 1360
  • [46] Air Quality Monitoring Intelling System Using Machine Learning Techniques
    Rosero-Montalvo, Paul D.
    Caraguay-Procel, Jorge A.
    Jaramillo, Edgar D.
    Michilena-Calderon, Jaime M.
    Umaquinga-Criollo, Ana C.
    Mediavilla-Valverde, Mario
    Ruiz, Miguel A.
    Beltran, Luis A.
    Peluffo-Ordonez, D. H.
    PROCEEDINGS 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTER SCIENCE (INCISCOS 2018), 2018, : 75 - 80
  • [47] Performance comparison of different momentum techniques on deep reinforcement learning*
    Sarigul, M.
    Avci, M.
    JOURNAL OF INFORMATION AND TELECOMMUNICATION, 2018, 2 (02) : 205 - 216
  • [48] Machine Learning Techniques for Air Quality Forecasting and Study on Real-Time Air Quality Monitoring
    Hable-Khandekar, Varsha
    Srinath, Pravin
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,
  • [49] Data-driven analysis and predictive modelling of hourly Air Quality Index (AQI) using deep learning techniques: a case study of Azamgarh, IndiaData-driven analysis and predictive modelling of hourly Air Quality Index (AQI) using deep learning techniques: a case study of Azamgarh, IndiaA Ansari and AR Quaff
    Asif Ansari
    Abdur Rahman Quaff
    Theoretical and Applied Climatology, 2025, 156 (1)
  • [50] A deep learning approach for prediction of air quality index in a metropolitan city
    Janarthanan, R.
    Partheeban, P.
    Somasundaram, K.
    Elamparithi, P. Navin
    SUSTAINABLE CITIES AND SOCIETY, 2021, 67