A Signal Processor for Gaussian Message Passing

被引:0
|
作者
Kroell, Harald [1 ]
Zwicky, Stefan [1 ]
Odermatt, Reto [1 ]
Bruderer, Lukas [2 ]
Burg, Andreas [3 ]
Huang, Qiuting [1 ]
机构
[1] Swiss Fed Inst Technol, Integrated Syst Lab, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Signal & Informat Processing Lab, Zurich, Switzerland
[3] Ecole Polytech Fed Lausanne, Telecommun Circuits Lab, Lausanne, Switzerland
来源
2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2014年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel signal processing unit built upon the theory of factor graphs, which is able to address a wide range of signal processing algorithms. More specifically, the demonstrated factor graph processor (FGP) is tailored to Gaussian message passing algorithms. We show how to use a highly configurable systolic array to solve the message update equations of nodes in a factor graph efficiently. A proper instruction set and compilation procedure is presented. In a recursive least squares channel estimation example we show that the FGP can compute a message update faster than a state-of-the-art DSP. The results demonstrate the usabilty of the FGP architecture as a flexible HW accelerator for signal-processing and communication systems.
引用
收藏
页码:1969 / 1972
页数:4
相关论文
共 50 条
  • [11] ON APPROXIMATE NONLINEAR GAUSSIAN MESSAGE PASSING ON FACTOR GRAPHS
    Petersen, Eike
    Hoffmann, Christian
    Rostalski, Philipp
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 513 - 517
  • [12] Processor allocation policies for message-passing parallel computers
    McCann, Cathy
    Zahorjan, John
    Performance Evaluation Review, 1994, 22 (01): : 19 - 32
  • [13] Scheduling DAGs on message passing m-processor systems
    Baskiyar, S
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (07) : 1497 - 1507
  • [14] Feedback Message Passing for Inference in Gaussian Graphical Models
    Liu, Ying
    Chandrasekaran, Venkat
    Anandkumar, Animashree
    Willsky, Alan S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4135 - 4150
  • [15] Gaussian Message Passing for Cooperative Localization in Wireless Networks
    Li, Bin
    Wu, Nan
    Wang, Hua
    Kuang, Jingming
    2014 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2014, : 448 - 452
  • [16] Sparse or Dense - Message Passing (MP) or Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery
    Mahmood, Asad
    Kang, Jaewook, Jr.
    Lee, HeungNo
    2013 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2013, : 259 - 264
  • [17] MULTI-PROCESSOR APPROXIMATE MESSAGE PASSING USING LOSSY COMPRESSION
    Han, Puxiao
    Zhu, Junan
    Niu, Ruixin
    Baron, Dror
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6240 - 6244
  • [18] Gaussian Message Passing for Overloaded Massive MIMO-NOMA
    Liu, Lei
    Yuen, Chau
    Guan, Yong Liang
    Li, Ying
    Huang, Chongwen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (01) : 210 - 226
  • [19] Gaussian Mixture Message Passing for Blind Known Interference Cancellation
    Wang, Taotao
    Shi, Long
    Zhang, Shengli
    Wang, Hui
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (09) : 4268 - 4282
  • [20] Sparse Vector Recovery: Bernoulli-Gaussian Message Passing
    Liu, Lei
    Huang, Chongwen
    Chi, Yuhao
    Yuen, Chau
    Guan, Yong Liang
    Li, Ying
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,