Nonlinear dynamical systems and adaptive filters in biomedicine

被引:0
|
作者
Pardalos, PM [1 ]
Sackellares, JC
Yatsenko, VA
Butenko, SI
机构
[1] Univ Florida, Ctr Appl Optimizat, ISE Dept, Gainesville, FL 32611 USA
[2] Univ Florida, Biomed Engn Program, Inst Brain, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Neurol & Neurosci, Gainesville, FL 32611 USA
[4] Univ Florida, Gainesville VA Med Ctr, Gainesville, FL 32611 USA
[5] Sci Fdn Res & Specialists Mol Cybernet & Informat, Kiev, Ukraine
关键词
adaptive filtration; optimization; control; lattice model; chaos; biomedical; synergetics; epileptic seizures;
D O I
10.1023/A:1022930406116
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we present the application of a method of adaptive estimation using an algebra geometric approach, to the study of dynamic processes in the brain. It is assumed that the brain dynamic processes can be described by nonlinear or bilinear lattice models. Our research focuses on the development of an estimation algorithm for a signal process in the lattice models with background additive white noise, and with different assumptions regarding the characteristics of the signal process. We analyze the estimation algorithm and implement it as a stochastic differential equation under the assumption that the Lie algebra, associated with the signal process, can be reduced to a finite dimensional nilpotent algebra. A generalization is given for the case of lattice models, which belong to a class of causal lattices with certain restrictions on input and output signals. The application of adaptive filters for state estimation of the CA3 region of the hippocampus (a common location of the epileptic focus) is discussed. Our areas of application involve two problems: (1) an adaptive estimation of state variables of the hippocampal network, and (2) space identification of the coupled ordinary equation lattice model for the CA3 region.
引用
收藏
页码:119 / 142
页数:24
相关论文
共 50 条
  • [11] Nonlinear structural dynamical system identification using adaptive particle filters
    Namdeo, Vikas
    Manohar, C. S.
    JOURNAL OF SOUND AND VIBRATION, 2007, 306 (3-5) : 524 - 563
  • [12] Monte Carlo filters for identification of nonlinear structural dynamical systems
    Manohar, C. S.
    Roy, D.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2006, 31 (4): : 399 - 427
  • [13] Predictive stability filters for nonlinear dynamical systems affected by disturbances
    Didier, Alexandre
    Zanelli, Andrea
    Wabersich, Kim P.
    Zeilinger, Melanie N.
    IFAC PAPERSONLINE, 2024, 58 (18): : 200 - 207
  • [14] Monte Carlo filters for identification of nonlinear structural dynamical systems
    C. S. Manohar
    D. Roy
    Sadhana, 2006, 31 : 399 - 427
  • [15] Parametric Bayesian Filters for Nonlinear Stochastic Dynamical Systems: A Survey
    Stano, Pawe
    Lendek, Zsofia
    Braaksma, Jelmer
    Babuska, Robert
    de Keizer, Cees
    den Dekker, Arnold J.
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 1607 - 1624
  • [16] Adaptive control for uncertain dynamical systems with nonlinear reference systems
    Gruenwald, Benjamin C.
    Yucelen, Tansel
    De La Torre, Gerardo
    Muse, Jonathan A.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (04) : 687 - 703
  • [17] Dynamical robust adaptive tracking for uncertain nonlinear systems
    Ahmed-Ali, T
    Lamnabhi-Lagarrigue, F
    INTERNATIONAL JOURNAL OF CONTROL, 1998, 70 (06) : 921 - 939
  • [18] Hybrid adaptive control for nonlinear impulsive dynamical systems
    Haddad, WM
    Hayakawa, T
    Nersesov, SG
    Chellaboina, V
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 5110 - 5115
  • [19] Nonlinear adaptive observer design for uncertain dynamical systems
    Vargas, JAR
    Hemerly, EM
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 1307 - 1308
  • [20] Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism
    Huang, WH
    PHYSICAL REVIEW E, 2000, 61 (02): : R1012 - R1015