A note on kernel density estimation at a parametric rate

被引:18
|
作者
Chacon, J. E. [1 ]
Montanero, J. [1 ]
Nogales, A. G. [1 ]
机构
[1] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
关键词
optimal density estimation; convergence rates; mean integrated squared error; super-kernel;
D O I
10.1080/10485250701262317
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of kernel density estimation, we give a characterization of the kernels for which the parametric mean integrated squared error (MISE) rate n(-1) maybe obtained, where n is the sample size. Also, for the cases where this rate is attainable, we give an asymptotic bandwidth choice that makes the kernel estimator consistent in mean integrated squared error at that rate and a numerical example showing the superior performance of the superkernel estimator when the bandwidth is properly chosen.
引用
收藏
页码:13 / 21
页数:9
相关论文
共 50 条
  • [31] Robust Kernel Density Estimation
    Kim, JooSeuk
    Scott, Clayton D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2529 - 2565
  • [32] Filtered kernel density estimation
    Marchette, David
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (01): : 106 - 109
  • [33] Isolation Kernel Density Estimation
    Ting, Kai Ming
    Washio, Takashi
    Wells, Jonathan R.
    Zhang, Hang
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 619 - 628
  • [34] Adaptive kernel density estimation
    Van Kerm, Philippe
    STATA JOURNAL, 2003, 3 (02): : 148 - 156
  • [35] Non-Parametric Probabilistic Demand Forecasting in Distribution Grids; Kernel Density Estimation and Mixture Density Networks
    Patel, R. D.
    Nazaripouya, H.
    Akhavan-Hejazi, H.
    2020 52ND NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2021,
  • [36] Kernel adjusted density estimation
    Srihera, Ramidha
    Stute, Winfried
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (05) : 571 - 579
  • [37] Contingent Kernel Density Estimation
    Fortmann-Roe, Scott
    Starfield, Richard
    Getz, Wayne M.
    PLOS ONE, 2012, 7 (02):
  • [38] Variable kernel density estimation
    Hazelton, ML
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) : 271 - 284
  • [39] Filtered kernel density estimation
    Marchette, DJ
    Priebe, CE
    Rogers, GW
    Solka, JL
    COMPUTATIONAL STATISTICS, 1996, 11 (02) : 95 - 112
  • [40] A note on the performance of bootstrap kernel density estimation with small re-sample sizes
    Mojirsheibani, Majid
    STATISTICS & PROBABILITY LETTERS, 2021, 178