Drought forecasting using the standardized precipitation index

被引:245
|
作者
Cancelliere, A. [1 ]
Di Mauro, G. [1 ]
Bonaccorso, B. [1 ]
Rossi, G. [1 ]
机构
[1] Univ Catania, Dept Civil & Environm Engn, I-95125 Catania, Italy
关键词
drought; precipitation; SPI; stochastic techniques; transition probabilities; forecast;
D O I
10.1007/s11269-006-9062-y
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Unlike other natural disasters, drought events evolve slowly in time and their impacts generally span a long period of time. Such features do make possible a more effective drought mitigation of the most adverse effects, provided a timely monitoring of an incoming drought is available. Among the several proposed drought monitoring indices, the Standardized Precipitation Index (SPI) has found widespread application for describing and comparing droughts among different time periods and regions with different climatic conditions. However, limited efforts have been made to analyze the role of the SPI for drought forecasting. The aim of the paper is to provide two methodologies for the seasonal forecasting of SPI, under the hypothesis of uncorrelated and normally distributed monthly precipitation aggregated at various time scales k. In the first methodology, the auto-covariance matrix of SPI values is analytically derived, as a function of the statistics of the underlying monthly precipitation process, in order to compute the transition probabilities from a current drought condition to another in the future. The proposed analytical approach appears particularly valuable from a practical stand point in light of the difficulties of applying a frequency approach due to the limited number of transitions generally observed even on relatively long SPI records. Also, an analysis of the applicability of a Markov chain model has revealed the inadequacy of such an approach, since it leads to significant errors in the transition probability as shown in the paper. In the second methodology, SPI forecasts at a generic time horizon M are analytically determined, in terms of conditional expectation, as a function of past values of monthly precipitation. Forecasting accuracy is estimated through an expression of the Mean Square Error, which allows one to derive confidence intervals of prediction. Validation of the derived expressions is carried out by comparing theoretical forecasts and observed SPI values by means of a moving window technique. Results seem to confirm the reliability of the proposed methodologies, which therefore can find useful application within a drought monitoring system.
引用
收藏
页码:801 / 819
页数:19
相关论文
共 50 条
  • [41] A Drought Index: The Standardized Precipitation Evapotranspiration Irrigation Index
    He, Liupeng
    Tong, Liang
    Zhou, Zhaoqiang
    Gao, Tianao
    Ding, Yanan
    Ding, Yibo
    Zhao, Yiyang
    Fan, Wei
    WATER, 2022, 14 (13)
  • [42] Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia
    Isia, Ismallianto
    Hadibarata, Tony
    Jusoh, Muhammad Noor Hazwan
    Bhattacharjya, Rajib Kumar
    Shahedan, Noor Fifinatasha
    Bouaissi, Aissa
    Fitriyani, Norma Latif
    Syafrudin, Muhammad
    SUSTAINABILITY, 2023, 15 (01)
  • [43] Analysis of meteorological drought in the Ruhr basin by using the Standardized Precipitation Index
    Khadr, Mosaad
    Morgenschweis, Gerd
    Schlenkhoff, Andreas
    World Academy of Science, Engineering and Technology, 2009, 33 : 607 - 616
  • [44] Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index
    Caloiero, Tommaso
    Veltri, Simone
    Caloiero, Paola
    Frustaci, Francesco
    WATER, 2018, 10 (08)
  • [45] Drought analysis in the Eastern Nile basin using the standardized precipitation index
    Mohamed Elkollaly
    Mosaad Khadr
    Bakenaz Zeidan
    Environmental Science and Pollution Research, 2018, 25 : 30772 - 30786
  • [46] Analyzing spatial patterns of meteorological drought using standardized precipitation index
    Agricultural and Soils Division, Indian Institute of Remote Sensing, 4, Kalidas Road, Dehradun, India
    不详
    Meteorol. Appl., 4 (329-336):
  • [47] Drought monitoring in Croatia using the standardized precipitation-evapotranspiration index
    Loncar-Petrinjak, Ivan
    Pasaric, Zoran
    Kalin, Ksenija Cindric
    GEOFIZIKA, 2024, 41 (01) : 1 - 23
  • [48] Drought analysis in the Eastern Nile basin using the standardized precipitation index
    Elkollaly, Mohamed
    Khadr, Mosaad
    Zeidan, Bakenaz
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (31) : 30772 - 30786
  • [49] Analyzing spatial patterns of meteorological drought using standardized precipitation index
    Patel, N. R.
    Chopra, P.
    Dadhwal, V. K.
    METEOROLOGICAL APPLICATIONS, 2007, 14 (04) : 329 - 336