A Collocation Method to Solve Higher Order Linear Complex Differential Equations in Rectangular Domains

被引:7
|
作者
Sezer, Mehmet [1 ]
Yalcinbas, Salih [2 ]
机构
[1] Mugla Univ, Fac Sci, Dept Math, Mugla, Turkey
[2] Celal Bayar Univ, Fac Sci, Dept Math, Manisa, Turkey
关键词
approximate solution; collocation method; collocation points; complex differential equations; Taylor polynomials and series; TAYLOR POLYNOMIAL SOLUTIONS; APPROXIMATE SOLUTION; COEFFICIENTS; OSCILLATION; SYSTEMS;
D O I
10.1002/num.20448
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a collocation method is developed to find an approximate solution of higher order linear complex differential equations with variable coefficients in rectangular domains. This method is essentially based on the matrix representations of the truncated Taylor series of the expressions in equation and their derivates, which consist of collocation points defined in the given domain. Some numerical examples with initial and boundary conditions are given to show the properties of the method. All results were computed using a program written in scientific Work Place v5.5 and Maple v12. (C) 2009 Wiley Periodicals. Inc. Numer Methods Partial Differential Eq 26: 596-611, 2010
引用
收藏
页码:596 / 611
页数:16
相关论文
共 50 条