A combinatorial study of partial order polytopes

被引:5
|
作者
Fiorini, S [1 ]
机构
[1] Free Univ Brussels, Dept Math, B-1050 Brussels, Belgium
关键词
D O I
10.1016/S0195-6698(03)00009-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To each finite set with at least two elements, there corresponds a partial order polytope. It is defined as the convex hull of the characteristic vectors of all partial orders which have that set as ground set. This 0/1-polytope contains the linear ordering polytope as a proper face. The present article deals with the facial structure of partial order polytopes. Our main results are: (i) a proof that the nonadjacency problem on partial order polytopes is NP-complete; (ii) a characterization of the polytopes that are affinely equivalent to a face of some partial order polytope. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:149 / 159
页数:11
相关论文
共 50 条
  • [31] Exponential Lower Bounds for Polytopes in Combinatorial Optimization
    Fiorini, Samuel
    Massar, Serge
    Pokutta, Sebastian
    Tiwary, Hans Raj
    De Wolf, Ronald
    JOURNAL OF THE ACM, 2015, 62 (02)
  • [32] Hirsch polytopes with exponentially long combinatorial segments
    Jean-Philippe Labbé
    Thibault Manneville
    Francisco Santos
    Mathematical Programming, 2017, 165 : 663 - 688
  • [33] 2 COMBINATORIAL PROPERTIES OF A CLASS OF SIMPLICIAL POLYTOPES
    LEE, CW
    ISRAEL JOURNAL OF MATHEMATICS, 1984, 47 (04) : 261 - 269
  • [34] Possibilities determine the combinatorial structure of probability polytopes
    Abramsky, Samson
    Barbosa, Rui Soares
    Kishida, Kohei
    Lal, Raymond
    Mansfield, Shane
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2016, 74 : 58 - 65
  • [35] COMBINATORIAL INSCRIBABILITY OBSTRUCTIONS FOR HIGHER DIMENSIONAL POLYTOPES
    Doolittle, Joseph
    Labbe, Jean-Philippe
    Lange, Carsten E. M. C.
    Sinn, Rainer
    Spreer, Jonathan
    Ziegler, Guenter M.
    MATHEMATIKA, 2020, 66 (04) : 927 - 953
  • [36] A COMBINATORIAL MODEL FOR COMPUTING VOLUMES OF FLOW POLYTOPES
    Benedetti, Carolina
    Gonzalez D'Leon, Rafael S.
    Hanusa, Christopher R. H.
    Harris, Pamela E.
    Khare, Apoorva
    Morales, Alejandro H.
    Yip, Martha
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (05) : 3369 - 3404
  • [37] On facet-inducing inequalities for combinatorial polytopes
    Simanchev R.Y.
    Journal of Applied and Industrial Mathematics, 2017, 11 (4) : 564 - 571
  • [38] Hirsch polytopes with exponentially long combinatorial segments
    Labbe, Jean-Philippe
    Manneville, Thibault
    Santos, Francisco
    MATHEMATICAL PROGRAMMING, 2017, 165 (02) : 663 - 688
  • [39] Optimal Bound on the Combinatorial Complexity of Approximating Polytopes
    Arya, Rahul
    Arya, Sunil
    da Fonseca, Guilherme D.
    Mount, David
    ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (04)
  • [40] Optimal Bound on the Combinatorial Complexity of Approximating Polytopes
    Ary, Rahul
    Arya, Sunil
    da Fonseca, Guilherme D.
    Mount, David M.
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 786 - 805