AN ESTIMATE FOR THE SUM OF THE SPITZER SERIES AND ITS GENERALIZATION

被引:0
|
作者
Nagaev, S., V [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk 630090, Russia
关键词
zeta function; expectation; normal law; Berry-Esseen estimate; Euler constant; Spitzer series; CONVERGENCE; MOMENTS;
D O I
10.1137/S0040585X97T990277
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An upper estimate for the absolute value of the sum of the Spitzer series is obtained. This estimate depends explicitly on the distribution in terms of which the Spitzer series is defined.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [41] The characteristic of power series and its sum function on the convergence circle
    Ma, Sheng
    Jiang, Qin
    ADVANCES IN TEXTILE ENGINEERING AND MATERIALS III, PTS 1 AND 2, 2013, 821-822 : 1434 - 1437
  • [42] Generalization of a Dirichlet sum transformation.
    Holder, O
    MATHEMATISCHE ZEITSCHRIFT, 1934, 38 : 476 - 482
  • [43] A twisted generalization of the classical Dedekind sum
    Isaacson, Brad
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (02) : 513 - 528
  • [44] An estimate of best approximation by angle of sum of double series with respect to multiplicative system with quasiconvex coefficients
    Bokayev, N. A.
    Syzdykova, A. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2015, 78 (02): : 31 - 36
  • [45] A Generalization of the Gcd-Sum Function
    Abel, Ulrich
    Awan, Waqar
    Kushnirevych, Vitaliy
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (06)
  • [46] A Generalization of the Bohr-Rogosinski Sum
    Kumar, S.
    Sahoo, S. K.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (08) : 2176 - 2186
  • [47] An Estimate of the Root Mean Square Error Incurred When Approximating an f ∈L2(R) by a Partial Sum of Its Hermite Series
    Huang, Mei Ling
    Kerman, Ron
    Spektor, Susanna
    MATHEMATICS, 2018, 6 (04)
  • [48] A Series Estimate
    Stenger, Allen
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (05): : 470 - 470
  • [49] A series estimate
    Diaz-Barrero, JL
    Egozcue, JJ
    FIBONACCI QUARTERLY, 2004, 42 (04): : 373 - 373
  • [50] A NEW PROOF OF THE ABSOLUTE CONVERGENCE OF THE SPITZER SERIES
    Nagaev, S. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2010, 54 (01) : 151 - U14