Semiparametric inference for mixtures of circular data

被引:0
|
作者
Lacour, Claire [1 ]
Thanh Mai Pham Ngoc [2 ]
机构
[1] Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, LAMA, F-77447 Marne La Vallee, France
[2] Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2022年 / 16卷 / 01期
关键词
Mixture model; semiparametric estimation; circular data; FINITE MIXTURES; MODEL SELECTION; DENSITY; IDENTIFIABILITY; DECONVOLUTION; DISTRIBUTIONS; PARAMETERS;
D O I
10.1214/22-EJS2024
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider X-1, ..., X-n a sample of data on the circle S-1, whose distribution is a two-component mixture. Denoting R and Q two rotations on S-1, the density of the X-i's is assumed to be g(x) = pf (R(-1)x)+(1 - p)f(Q(-1)x), where p is an element of (0, 1) and f is an unknown density on the circle. In this paper we estimate both the parametric part theta = (p, R, Q) and the nonparametric part f. The specific problems of identifiability on the circle are studied. A consistent estimator of theta is introduced and its asymptotic normality is proved. We propose a Fourier-based estimator of f with a penalized criterion to choose the resolution level. We show that our adaptive estimator is optimal from the oracle and minimax points of view when the density belongs to a Sobolev ball. Our method is illustrated by numerical simulations.
引用
收藏
页码:3482 / 3522
页数:41
相关论文
共 50 条
  • [41] Mixtures of semiparametric varying coefficient models for longitudinal data with nonignorable dropout
    Zhi-qiang Li
    Liu-gen Xue
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 125 - 132
  • [42] Mixtures of semiparametric varying coefficient models for longitudinal data with nonignorable dropout
    Li, Zhi-qiang
    Xue, Liu-gen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (01): : 125 - 132
  • [43] SEMIPARAMETRIC BAYESIAN INFERENCE FOR DYNAMIC TOBIT PANEL DATA MODELS WITH UNOBSERVED HETEROGENEITY
    Li, Tong
    Zheng, Xiaoyong
    JOURNAL OF APPLIED ECONOMETRICS, 2008, 23 (06) : 699 - 728
  • [44] Model selection and semiparametric inference for bivariate failure-time data -: Comment
    Peña, EA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (449) : 73 - 75
  • [45] A semiparametric inverse-Gaussian model and inference for survival data with a cured proportion
    Choi, Sangbum
    Huang, Xuelin
    Cormier, Janice N.
    Doksum, Kjell A.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (04): : 635 - 649
  • [46] Learning From Data Semiparametric Models Versus Faith-based Inference
    Van der Laan, Mark
    Hubbard, Alan E.
    Jewell, Nicholas
    EPIDEMIOLOGY, 2010, 21 (04) : 479 - 481
  • [47] Model selection and semiparametric inference for bivariate failure-time data - Rejoinder
    Wang, WJ
    Wells, MT
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (449) : 75 - 76
  • [48] Semiparametric inference in matched case-control studies with missing covariate data
    Rathouz, PJ
    Satten, GA
    Carroll, RJ
    BIOMETRIKA, 2002, 89 (04) : 905 - 916
  • [49] Semiparametric model and inference for spontaneous abortion data with a cured proportion and biased sampling
    Piao, Jin
    Ning, Jing
    Chambers, Christina D.
    Xu, Ronghui
    BIOSTATISTICS, 2018, 19 (01) : 54 - 70
  • [50] Semiparametric likelihood inference for left-truncated and right-censored data
    Huang, Chiung-Yu
    Ning, Jing
    Qin, Jing
    BIOSTATISTICS, 2015, 16 (04) : 785 - 798