Semiparametric inference for mixtures of circular data

被引:0
|
作者
Lacour, Claire [1 ]
Thanh Mai Pham Ngoc [2 ]
机构
[1] Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, LAMA, F-77447 Marne La Vallee, France
[2] Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2022年 / 16卷 / 01期
关键词
Mixture model; semiparametric estimation; circular data; FINITE MIXTURES; MODEL SELECTION; DENSITY; IDENTIFIABILITY; DECONVOLUTION; DISTRIBUTIONS; PARAMETERS;
D O I
10.1214/22-EJS2024
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider X-1, ..., X-n a sample of data on the circle S-1, whose distribution is a two-component mixture. Denoting R and Q two rotations on S-1, the density of the X-i's is assumed to be g(x) = pf (R(-1)x)+(1 - p)f(Q(-1)x), where p is an element of (0, 1) and f is an unknown density on the circle. In this paper we estimate both the parametric part theta = (p, R, Q) and the nonparametric part f. The specific problems of identifiability on the circle are studied. A consistent estimator of theta is introduced and its asymptotic normality is proved. We propose a Fourier-based estimator of f with a penalized criterion to choose the resolution level. We show that our adaptive estimator is optimal from the oracle and minimax points of view when the density belongs to a Sobolev ball. Our method is illustrated by numerical simulations.
引用
收藏
页码:3482 / 3522
页数:41
相关论文
共 50 条
  • [1] Bayesian semiparametric modeling and inference with mixtures of symmetric distributions
    Athanasios Kottas
    Gilbert W. Fellingham
    Statistics and Computing, 2012, 22 : 93 - 106
  • [2] Bayesian semiparametric modeling and inference with mixtures of symmetric distributions
    Kottas, Athanasios
    Fellingham, Gilbert W.
    STATISTICS AND COMPUTING, 2012, 22 (01) : 93 - 106
  • [3] Semiparametric Bayesian Inference for Phage Display Data
    Leon-Novelo, Luis G.
    Mueller, Peter
    Arap, Wadih
    Kolonin, Mikhail
    Sun, Jessica
    Pasqualini, Renata
    Do, Kim-Anh
    BIOMETRICS, 2013, 69 (01) : 174 - 183
  • [4] Semiparametric inference with correlated recurrence time data
    Adekpedjou, Akim
    Quiton, Jonathan
    Wen, Xuerong Meggie
    STATISTICAL METHODOLOGY, 2013, 10 (01) : 1 - 13
  • [5] Bayesian semiparametric inference in longitudinal metabolomics data
    Sarkar, Abhra
    Cominetti, Ornella
    Montoliu, Ivan
    Hosking, Joanne
    Pinkney, Jonathan
    Martin, Francois-Pierre
    Dunson, David B.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Empirical likelihood inference in mixtures of semiparametric varying coefficient EV models for longitudinal data with nonignorable dropout
    Xing-cai Zhou
    Jin-Guan Lin
    Journal of the Korean Statistical Society, 2013, 42 : 215 - 225
  • [7] Empirical likelihood inference in mixtures of semiparametric varying coefficient EV models for longitudinal data with nonignorable dropout
    Zhou, Xing-cai
    Lin, Jin-Guan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (02) : 215 - 225
  • [8] Semiparametric inference for merged data from multiple data sources
    Saegusa, Takumi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 216 : 1 - 14
  • [9] Semiparametric Bayesian techniques for problems in circular data
    Ghosh, K
    Jammalamadaka, SR
    Tiwari, RC
    JOURNAL OF APPLIED STATISTICS, 2003, 30 (02) : 145 - 161
  • [10] Inference in semiparametric dynamic models for binary longitudinal data
    Chib, Siddhartha
    Jeliazkov, Ivan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 685 - 700