Tunable broadband terahertz metamaterial absorber based on vanadium dioxide

被引:38
|
作者
Yang, Guishuang [1 ]
Yan, Fengping [1 ]
Du, Xuemei [1 ]
Li, Ting [1 ]
Wang, Wei [1 ]
Lv, Yuling [1 ]
Zhou, Hong [2 ]
Hou, Yafei [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Osaka Inst Technol, Dept Elect Informat & Commun Engn, Asahi Ku, 5-16-1 Omiya, Osaka 5358585, Japan
[3] Okayama Univ, Grad Sch Nat Sci & Technol, 1-1-1 Tsushimanaka, Okayama, Okayama 7008530, Japan
基金
中国国家自然科学基金;
关键词
PERFECT ABSORBER;
D O I
10.1063/5.0082295
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The special electromagnetic properties of metamaterials have contributed to the development of terahertz technology, and terahertz broadband absorbers for various applications have been investigated. The design of metamaterial absorbers with tunability is in a particularly attractive position. In this work, a tunable broadband terahertz metamaterial absorber is proposed based on the phase transition material vanadium dioxide (VO2). The simulation results show that an excellent absorption bandwidth reaches 3.78 THz with the absorptivity over 90% under normal incidence. The absorptivity of the proposed structure can be dynamically tuned from 2.7% to 98.9% by changing the conductivity of VO2, which changes the structure from a perfect reflector to an absorber. An excellent amplitude modulation with the absorptivity is realized. The mechanism of broadband absorption is explored by analyzing the electric field distribution of the absorber based on impedance matching theory. In addition, it also has the advantage of polarization and incident angle insensitivity. The proposed absorber may have a wide range of promising applications in areas such as terahertz imaging, sensing, and detection.(c) 2022 Author(s).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Tunable multiple broadband terahertz perfect absorber based on vanadium dioxide
    Zhang, Ting
    Yang, Sen
    Yu, XinYing
    OPTICS COMMUNICATIONS, 2021, 501
  • [22] Tunable multiple broadband terahertz perfect absorber based on vanadium dioxide
    Zhang, Ting
    Yang, Sen
    Yu, XinYing
    Zhang, Ting (zhangting_cai@163.com), 1600, Elsevier B.V. (501):
  • [23] Tunable Broadband Terahertz Perfect Absorber Design Based on Vanadium Dioxide
    Zhang Ting
    Yang Sen
    Yu XinYing
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (21)
  • [24] A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial
    Liu, Yongchen
    Qian, Yixian
    Hu, Fangrong
    Jiang, Mingzhu
    Zhang, Longhui
    RESULTS IN PHYSICS, 2020, 19
  • [25] Tunable bifunctional metamaterial terahertz absorber based on Dirac semimetal and vanadium dioxide
    Li, Zhaoxin
    Wang, Tongling
    Zhang, Huiyun
    Li, Dehua
    Zhang, Yuping
    SUPERLATTICES AND MICROSTRUCTURES, 2021, 155
  • [26] Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption
    Zhang, Ruoya
    Luo, Yuehao
    Xu, Jike
    Wang, Huaying
    Han, Haiyan
    Hu, Dan
    Zhu, Qiaofen
    Zhang, Yan
    OPTICS EXPRESS, 2021, 29 (26) : 42989 - 42998
  • [27] Tunable broadband terahertz absorber based on a simple design of a vanadium dioxide resonator
    Wang, Yunji
    Gu, Yao
    Liu, Fei
    Chen, Lin
    Wang, Xingchao
    Ji, Ke
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2025, 42 (03): : 309 - 314
  • [28] Tunable ultra-broadband terahertz perfect absorber based on vanadium oxide metamaterial
    Li, Yulian
    Gao, Wei
    Guo, Li
    Chen, Zihao
    Li, Changjian
    Zhang, Haiming
    Jiao, Jiajia
    An, Bowen
    OPTICS EXPRESS, 2021, 29 (25): : 41222 - 41233
  • [29] Tunable terahertz wave broadband absorber based on metamaterial
    Chen Jun
    Yang Mao-Sheng
    Li Ya-Di
    Cheng Deng-Ke
    Guo Geng-Liang
    Jiang Lin
    Zhang Hai-Ting
    Song Xiao-Xian
    Ye Yun-Xia
    Ren Yun-Peng
    Ren Xu-Dong
    Zhang Ya-Ting
    Yao Jian-Quan
    ACTA PHYSICA SINICA, 2019, 68 (24)
  • [30] Vanadium dioxide-based ultra-broadband metamaterial absorber for terahertz waves
    Wu, Guozheng
    Li, Chao
    Wang, Dong
    Gao, Song
    Chen, Wenya
    Guo, Shijing
    Xiong, Jiaran
    OPTICAL MATERIALS, 2024, 147