Global Context Network for Steel Surface Defect Detection

被引:0
|
作者
Yang, Zekun [1 ]
Zhu, Wei [1 ]
Ma, Feng [1 ]
Zhao, Jiang [1 ]
Jiang, Hao [1 ]
机构
[1] Beijing Inst Technol, Sch Mechatron Engn, Beijing, Peoples R China
关键词
surface defect detection; feature fusion; global context Nock;
D O I
10.1109/icus50048.2020.9274836
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Surface defect detection has been spotlighted in the product quality control. There arc lots of methods focused on the handcrafted optical features and have worked well under specified conditions. However, effectively detecting defects in products is nontrivial. Among the challenge is the complexity of surface defect, such as micro defect with noise, at vastly different scales. In order tackle these problems, we propose a feature fusion network using global context block for surface defect detection. A pipeline is presented that evaluates defect images with 300x300 resolution. In the framework, the global context block is refined, which fuses information effectively between different feature maps. Experimental results on steel defect datasets prove that our approach yields scores of map > 0.6 for all surface defects and provides a remarkably fast test speed, at similar to 20 frames per second.
引用
收藏
页码:985 / 990
页数:6
相关论文
共 50 条
  • [31] Steel surface defect detection based on bidirectional cross-scale fusion deep network
    Xie, Zhihua
    Jin, Liang
    OPTICAL REVIEW, 2025,
  • [32] A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8
    Chu, Yuqun
    Yu, Xiaoyan
    Rong, Xianwei
    SENSORS, 2024, 24 (19)
  • [33] Steel Plate Surface Defect Detection Based on Dataset Enhancement and Lightweight Convolution Neural Network
    Yang, Luya
    Huang, Xinbo
    Ren, Yucheng
    Huang, Yanchen
    MACHINES, 2022, 10 (07)
  • [34] LE-YOLOv5: A Lightweight and Efficient Neural Network for Steel Surface Defect Detection
    Zhu, Chengshun
    Sun, Yong
    Zhang, Hongji
    Yuan, Shilong
    Zhang, Hui
    IEEE ACCESS, 2024, 12 : 195242 - 195255
  • [35] A deep learning model for steel surface defect detection
    Zhaoguo Li
    Xiumei Wei
    M. Hassaballah
    Yihong Li
    Xuesong Jiang
    Complex & Intelligent Systems, 2024, 10 : 885 - 897
  • [36] Sub-surface defect detection in a steel sheet
    Atzlesberger, J.
    Zagar, B. G.
    Cihal, R.
    Brummayer, M.
    Reisinger, P.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (08)
  • [37] Few-Shot Steel Surface Defect Detection
    Wang, Haohan
    Li, Zhuoling
    Wang, Haoqian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [38] A deep learning model for steel surface defect detection
    Li, Zhaoguo
    Wei, Xiumei
    Hassaballah, M.
    Li, Yihong
    Jiang, Xuesong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 885 - 897
  • [39] Defect Detection Of Steel Surface Using Entropy Segmentation
    Nand, Gagan Kishore
    Noopur
    Neogi, Nirbhar
    2014 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2014,
  • [40] GLNet: Global-Local Fusion Network for Strip Steel Surface Defects Detection
    Wang, Xuan
    Bao, Liuxin
    Zhou, Xiaofei
    Xia, Lei
    Xu, Xiaobin
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 1256 - 1260