Global Context Network for Steel Surface Defect Detection

被引:0
|
作者
Yang, Zekun [1 ]
Zhu, Wei [1 ]
Ma, Feng [1 ]
Zhao, Jiang [1 ]
Jiang, Hao [1 ]
机构
[1] Beijing Inst Technol, Sch Mechatron Engn, Beijing, Peoples R China
关键词
surface defect detection; feature fusion; global context Nock;
D O I
10.1109/icus50048.2020.9274836
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Surface defect detection has been spotlighted in the product quality control. There arc lots of methods focused on the handcrafted optical features and have worked well under specified conditions. However, effectively detecting defects in products is nontrivial. Among the challenge is the complexity of surface defect, such as micro defect with noise, at vastly different scales. In order tackle these problems, we propose a feature fusion network using global context block for surface defect detection. A pipeline is presented that evaluates defect images with 300x300 resolution. In the framework, the global context block is refined, which fuses information effectively between different feature maps. Experimental results on steel defect datasets prove that our approach yields scores of map > 0.6 for all surface defects and provides a remarkably fast test speed, at similar to 20 frames per second.
引用
收藏
页码:985 / 990
页数:6
相关论文
共 50 条
  • [1] Global attention module and cascade fusion network for steel surface defect detection☆ ☆
    Liu, Guanghu
    Chu, Maoxiang
    Gong, Rongfen
    Zheng, Zehao
    PATTERN RECOGNITION, 2025, 158
  • [2] Global attention module and cascade fusion network for steel surface defect detection
    Liu, Guanghu
    Chu, Maoxiang
    Gong, Rongfen
    Zheng, Zehao
    PATTERN RECOGNITION, 2025, 158
  • [3] Global attention module and cascade fusion network for steel surface defect detection
    Liu, Guanghu
    Chu, Maoxiang
    Gong, Rongfen
    Zheng, Zehao
    Pattern Recognition, 2025, 158
  • [4] CDDNet: Camouflaged Defect Detection Network for Steel Surface
    Luo, Qiwu
    Li, Ben
    Su, Jiaojiao
    Yang, Chunhua
    Gui, Weihua
    Silven, Olli
    Liu, Li
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [5] Cascaded adaptive global localisation network for steel defect detection
    Yu, Jianbo
    Wang, Yanshu
    Li, Qingfeng
    Li, Hao
    Ma, Mingyan
    Liu, Peilun
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024, 62 (13) : 4884 - 4901
  • [6] A Global Feature Reused Network for Defect Detection in Steel Images
    Yang, Chengli
    Wang, Qingqing
    Liu, Zhanqiang
    Cheng, Yanhai
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (11)
  • [7] Surface Defect Detection of Steel Strip with Double Pyramid Network
    Zhou, Xinwen
    Wei, Mengen
    Li, Qianglong
    Fu, Yinghua
    Gan, Yangzhou
    Liu, Hao
    Ruan, Jing
    Liang, Jiuzhen
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [8] Cascading Convolutional Neural Network for Steel Surface Defect Detection
    Lin, Chih-Yang
    Chen, Cheng-Hsun
    Yang, Ching-Yuan
    Akhyar, Fityanul
    Hsu, Chao-Yung
    Ng, Hui-Fuang
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING, 2020, 965 : 202 - 212
  • [9] Steel surface defect detection based on sparse global attention transformer
    Li, Yinghao
    Han, Zhiyong
    Wang, Wenmeng
    Xu, Heping
    Wei, Yongpeng
    Zai, Guangjun
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (04)
  • [10] PGA-Net: Pyramid Feature Fusion and Global Context Attention Network for Automated Surface Defect Detection
    Dong, Hongwen
    Song, Kechen
    He, Yu
    Xu, Jing
    Yan, Yunhui
    Meng, Qinggang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (12) : 7448 - 7458