Deep Learning Role in Early Diagnosis of Prostate Cancer

被引:67
|
作者
Reda, Islam [1 ,2 ]
Khalil, Ashraf [3 ]
Elmogy, Mohammed [1 ,2 ]
Abou El-Fetouh, Ahmed [1 ]
Shalaby, Ahmed [2 ]
Abou El-Ghar, Mohamed [4 ]
Elmaghraby, Adel [5 ]
Ghazal, Mohammed [3 ]
El-Baz, Ayman [2 ]
机构
[1] Mansoura Univ, Fac Comp & Informat, Mansoura, Egypt
[2] Univ Louisville, Dept Bioengn, Louisville, KY 40292 USA
[3] Abu Dhabi Univ, Elect & Comp Engn Dept, Abu Dhabi, U Arab Emirates
[4] Mansoura Univ, Radiol Dept, Mansoura, Egypt
[5] Univ Louisville, Dept Comp Engn & Comp Sci, Louisville, KY 40292 USA
关键词
prostate cancer; CAD; PSA; ADC; SNCSAE; APPARENT DIFFUSION-COEFFICIENT; COMPUTER-AIDED DIAGNOSIS; GLEASON SCORE; REPRESENTATION; TISSUE; MRI;
D O I
10.1177/1533034618775530
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen-based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient-cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Prostate Cancer Diagnosis using Deep Learning with 3D Multiparametric MRI
    Liu, Saifeng
    Zheng, Huaixiu
    Feng, Yesu
    Li, Wei
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [22] Multiparametric ultrasound of prostate: role in prostate cancer diagnosis
    Kaneko, Masatomo
    Lenon, Maria Sarah L.
    Ramacciotti, Lorenzo Storino
    Medina, Luis G.
    Sayegh, Aref S.
    Rincon, Anibal La Riva
    Perez, Laura C.
    Ghoreifi, Alireza
    Lizana, Maria
    Jadvar, Donya S.
    Lebastchi, Amir H.
    Cacciamani, Giovanni E.
    Abreu, Andre Luis
    THERAPEUTIC ADVANCES IN UROLOGY, 2022, 14
  • [23] Radiomics, deep learning and early diagnosis in oncology
    Wei, Peng
    EMERGING TOPICS IN LIFE SCIENCES, 2021, 5 (06) : 829 - 835
  • [24] Deep Learning Approach for Early Diagnosis of Jaundice
    Kalbande, Dhananjay
    Majumdar, Anuradha
    Dorik, Pradeep
    Prajapati, Prachi
    Deshpande, Samira
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 387 - 395
  • [25] CANCER OF THE PROSTATE - EARLY DIAGNOSIS AND SCREENING PROGRAMS
    FENDLER, JP
    PERRIN, P
    PRESSE MEDICALE, 1995, 24 (32): : 1461 - 1463
  • [26] Early diagnosis and surgical management of prostate cancer
    Linton, KD
    Hamdy, FC
    CANCER TREATMENT REVIEWS, 2003, 29 (03) : 151 - 160
  • [27] EARLY DIAGNOSIS OF CANCER OF PROSTATE BY RECTAL PALPATION
    LENT, V
    MEYER, M
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1978, 103 (08) : 335 - 336
  • [28] Strategies for early diagnosis and prevention of prostate cancer
    Valeri, A.
    Malavaud, B.
    Desrichard, O.
    Cornu, J. -N.
    Blanchet, P.
    Dervaux, B.
    Puech, P.
    Villers, A.
    Cancel-Tassin, G.
    Cussenot, O.
    BULLETIN DU CANCER, 2010, 97 (12) : 1499 - 1515
  • [29] Controversial guidelines in early diagnosis of prostate cancer
    Casal, ER
    Majdalani, MP
    MEDICINA-BUENOS AIRES, 2003, 63 (01) : 77 - 81
  • [30] SCREENING AND EARLY DIAGNOSIS OF PROSTATE CANCER: AN UPDATE
    Lumen, N.
    Fonteyne, V
    De Meerleer, G.
    De Visschere, P.
    Ost, P.
    Oosterlinck, W.
    Villeirs, G.
    ACTA CLINICA BELGICA, 2012, 67 (04) : 270 - 275