Self-weighted quantile estimation of autoregressive conditional duration model

被引:1
|
作者
Wang, Xiaochen [1 ]
Song, Yuping [2 ]
机构
[1] Shanghai Normal Univ, Coll Math & Sci, Shanghai 200234, Peoples R China
[2] Shanghai Normal Univ, Sch Finance & Business, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
High frequency financial data; ACD model; Market liquidity; Self-weighted quantile regression;
D O I
10.1007/s42952-021-00121-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An efficient market is often related to the market liquidity in a certain sense. In this paper, the autoregressive conditional duration (ACD) model is used for modeling and analyzing the market liquidity based on high-frequency financial data, which takes the volume duration as its measure index. Considering the high peak and heavy tail of high-frequency financial data, the self-weighted quantile regression (SQR) estimators for the unknown parameters in ACD model are constructed. The consistency and asymptotic properties of the estimators are proved. Furthermore, Monte Carlo simulation shows that the SQR estimators with data-driven weights are more accurate than those by traditional quantile regression (QR). Moreover, the performance of SQR estimation performs better with the increase of the proportion of outliers. The mean deviation and mean square error are reduced up to 96.24% and 91.83%, respectively. Finally, we illustrate the SQR method by an empirical analysis of the volume duration for Industrial And Commercial Bank Of China (ICBC) and PingAn Bank stocks in China. Through the Akaike Information Criterion (AIC) and other evaluation criteria, the SQR estimators at different quantiles all possess better performance.
引用
收藏
页码:87 / 108
页数:22
相关论文
共 50 条
  • [21] A robust self-weighted SELO regression model
    Su, Meihong
    Guo, Yaqing
    Men, Changqian
    Wang, Wenjian
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (11) : 3189 - 3199
  • [22] Efficient estimation for the conditional autoregressive model
    Ahmed, S. E.
    Hussein, A.
    Al-Momani, Marwan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2569 - 2581
  • [23] Nonlinear Autoregressive Conditional Duration Models for Traffic Congestion Estimation
    Vlahogianni, Eleni I.
    Karlaftis, Matthew G.
    Kepaptsoglou, Konstantinos
    JOURNAL OF PROBABILITY AND STATISTICS, 2011, 2011
  • [24] The Birnbaum-Saunders autoregressive conditional duration model
    Bhatti, Chad R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (10) : 2062 - 2078
  • [25] Semiparametric Autoregressive Conditional Duration Model: Theory and Practice
    Saart, Patrick W.
    Gao, Jiti
    Allen, David E.
    ECONOMETRIC REVIEWS, 2015, 34 (6-10) : 848 - 880
  • [26] Time-varying autoregressive conditional duration model
    Bortoluzzo, Adriana B.
    Morettin, Pedro A.
    Toloi, Clelia M. C.
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (05) : 847 - 864
  • [27] Strong Consistency for the Conditional Self-weighted M Estimator of GRCA(p) Models
    Chi Yao
    Wei Yu
    Xuejun Wang
    Methodology and Computing in Applied Probability, 2023, 25
  • [28] Self-Weighted Unsupervised LDA
    Li, Xuelong
    Zhang, Yunxing
    Zhang, Rui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (03) : 1627 - 1632
  • [29] Strong Consistency for the Conditional Self-weighted M Estimator of GRCA(p) Models
    Yao, Chi
    Yu, Wei
    Wang, Xuejun
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (01)
  • [30] Correction to: A robust self-weighted SELO regression model
    Meihong Su
    Yaqing Guo
    Changqian Men
    Wenjian Wang
    International Journal of Machine Learning and Cybernetics, 2020, 11 (6) : 1357 - 1357