Multiple soliton solutions for the variant Boussinesq equations

被引:5
|
作者
Guo, Peng [1 ,2 ,3 ]
Wu, Xiang [2 ,3 ]
Wang, Liang-bi [2 ,3 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Mechatron Engn, Lanzhou 730070, Peoples R China
[3] Lanzhou Jiaotong Univ, Minist Educ, Key Lab Railway Vehicle Thermal Engn, Lanzhou 730070, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
基金
中国国家自然科学基金;
关键词
Hirota bilinear method; the variant Boussinesq equations; multiple soliton solutions; multiple singular soliton solutions; TRAVELING-WAVE SOLUTIONS; NONLINEAR EVOLUTION-EQUATIONS; HIROTA 3-SOLITON CONDITION; TANH-FUNCTION METHOD; EXP-FUNCTION METHOD; DE VRIES EQUATION; BILINEAR EQUATIONS; BURGERS-EQUATION; COLLISIONS; SYSTEM;
D O I
10.1186/s13662-015-0371-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hirota bilinear method is used to handle the variant Boussinesq equations. Multiple soliton solutions and multiple singular soliton solutions are formally established. It is shown that the Hirota bilinear method may provide us with a straightforward and effective mathematic tool for generating multiple soliton solutions of nonlinear wave equations in fluid mechanics.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Bifurcations of travelling wave solutions in variant Boussinesq equations
    Yu-bo Yuan
    Dong-mei Pu
    Shu-min Li
    Applied Mathematics and Mechanics, 2006, 27 : 811 - 822
  • [22] BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS IN VARIANT BOUSSINESQ EQUATIONS
    袁玉波
    溥冬梅
    李庶民
    AppliedMathematicsandMechanics(EnglishEdition), 2006, (06) : 811 - 822
  • [23] On the variant Boussinesq equations
    Gao, YT
    Tian, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (04): : 335 - 336
  • [24] The generalized Kaup-Boussinesq equation: multiple soliton solutions
    Wazwaz, Abdul-Majid
    WAVES IN RANDOM AND COMPLEX MEDIA, 2015, 25 (04) : 473 - 481
  • [25] The classification of the single travelling wave solutions to the variant Boussinesq equations
    Kai, Yue
    PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (04):
  • [26] All traveling wave exact solutions of the variant Boussinesq equations
    Yuan, Wenjun
    Meng, Fanning
    Huang, Yong
    Wu, Yonghong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 865 - 872
  • [27] Jacobi elliptic function solutions for two variant Boussinesq equations
    Lü, D
    CHAOS SOLITONS & FRACTALS, 2005, 24 (05) : 1373 - 1385
  • [28] Solitons and other exact solutions for variant nonlinear Boussinesq equations
    Zayed, Elsayed M. E.
    Al-Nowehy, Abdul-Ghani
    OPTIK, 2017, 139 : 166 - 177
  • [29] The classification of the single travelling wave solutions to the variant Boussinesq equations
    YUE KAI
    Pramana, 2016, 87
  • [30] New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations
    Yan, ZY
    Bluman, G
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 149 (01) : 11 - 18