ROBUST VIDEO FACIAL AUTHENTICATION WITH UNSUPERVISED MODE DISENTANGLEMENT

被引:0
|
作者
Kim, Minsu [1 ]
Lee, Hong Joo [1 ]
Lee, Sangmin [1 ]
Ro, Yong Man [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Image & Video Syst Lab, Sch Elect Engn, Daejeon, South Korea
来源
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2020年
关键词
Deep learning; disentangled representation; facial authentication; dynamic encoding; RECOGNITION;
D O I
10.1109/icip40778.2020.9191052
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Deep learning-based video facial authentication has limitations when it comes to real-world applications, due to large mode variations such as illumination, pose, and eyeglasses variations in real-life situations. Many of existing mode-invariant facial authentication methods need labels of each mode. However, the label information could not be always available in practice. To alleviate this problem, we develop an unsupervised mode disentangling method for video facial authentication. By matching both disentangled identity features and dynamic features of two facial videos, our proposed method shows significant face verification and identification performances on three publicly available datasets, KAIST-MPMI, UVA-NEMO, and YTF.
引用
收藏
页码:1321 / 1325
页数:5
相关论文
共 50 条
  • [41] UNSUPERVISED PHYSICS-INFORMED DISENTANGLEMENT OF MULTIMODAL DATA
    Walker, Elise
    Trask, Nathaniel
    Martinez, Carianne
    Lee, Kookjin
    Actor, Jonas a.
    Saha, Sourav
    Shilt, Troy
    Vizoso, Daniel
    Dingreville, Remi
    Boyce, Brad l.
    FOUNDATIONS OF DATA SCIENCE, 2024,
  • [42] Unsupervised Representation Disentanglement of Text: An Evaluation on Synthetic Datasets
    Zhang, Lan
    Prokhorov, Victor
    Shareghi, Ehsan
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 128 - 140
  • [43] Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
    Liao, Haofu
    Lin, Wei-An
    Yuan, Jianbo
    Zhou, S. Kevin
    Luo, Jiebo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 203 - 211
  • [44] Unsupervised MRI motion artifact disentanglement: introducing MAUDGAN
    Safari, Mojtaba
    Yang, Xiaofeng
    Chang, Chih-Wei
    Qiu, Richard L. J.
    Fatemi, Ali
    Archambault, Louis
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11):
  • [45] Interpretable Visual Neural Decoding with Unsupervised Semantic Disentanglement
    Zhou, Qiongyi
    Du, Changde
    Li, Dan
    Wen, Bincheng
    Chang, Le
    He, Huiguang
    MACHINE INTELLIGENCE RESEARCH, 2025,
  • [46] Unsupervised Disentanglement Learning via Dirichlet Variational Autoencoder
    Xu, Kunxiong
    Fan, Wentao
    Liu, Xin
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 341 - 352
  • [47] Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation
    Wei, Yuxiang
    Shi, Yupeng
    Liu, Xiao
    Ji, Zhilong
    Gao, Yuan
    Wu, Zhongqin
    Zuo, Wangmeng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6701 - 6710
  • [48] Guided Unsupervised Learning of Mode Specific Models for Facial Point Detection in the Wild
    Jaiswal, Shashank
    Almaev, Timur R.
    Valstar, Michel F.
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 370 - 377
  • [49] Unsupervised Extraction of Video Highlights Via Robust Recurrent Auto-encoders
    Yang, Huan
    Wang, Baoyuan
    Lin, Stephen
    Wipf, David
    Guo, Minyi
    Guo, Baining
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4633 - 4641
  • [50] Robust Anchor Embedding for Unsupervised Video Person re-IDentification in the Wild
    Ye, Mang
    Lan, Xiangyuan
    Yuen, Pong C.
    COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 176 - 193