Therapeutic genome engineering via CRISPR-Cas systems

被引:21
|
作者
Moreno, Ana M. [1 ]
Mali, Prashant [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92103 USA
关键词
LENTIVIRAL VECTORS; HOMOLOGOUS RECOMBINATION; CELLULAR-IMMUNITY; ANALYSIS REVEALS; GENE-EXPRESSION; MOUSE MODEL; HUMAN-CELLS; RNA; DNA; EFFICIENT;
D O I
10.1002/wsbm.1380
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Differences in genomes underlie most organismal diversity, and aberrations in genomes underlie many disease states. With the growing knowledge of the genetic and pathogenic basis of human disease, development of safe and efficient platforms for genome and epigenome engineering will transform our ability to therapeutically target human diseases and also potentially engineer disease resistance. In this regard, the recent advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) RNA-guided nuclease systems have transformed our ability to target nucleic acids. Here we review therapeutic genome engineering applications with a specific focus on the CRISPR-Cas toolsets. We summarize past and current work, and also outline key challenges and future directions. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Comprehensive Genome Engineering Toolbox for Microalgae Nannochloropsis oceanica Based on CRISPR-Cas Systems
    Naduthodi, Mihris Ibnu Saleem
    Sudfeld, Christian
    Avitzigiannis, Emmanouil Klimis
    Trevisan, Nicola
    van Lith, Eduard
    Sancho, Javier Alcaide
    D'Adamo, Sarah
    Barbosa, Maria
    van der Oost, John
    ACS SYNTHETIC BIOLOGY, 2021, 10 (12): : 3369 - 3378
  • [22] Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting
    Chen, Fuqiang
    Ding, Xiao
    Feng, Yongmei
    Seebeck, Timothy
    Jiang, Yanfang
    Davis, Gregory D.
    NATURE COMMUNICATIONS, 2017, 8
  • [23] Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting
    Fuqiang Chen
    Xiao Ding
    Yongmei Feng
    Timothy Seebeck
    Yanfang Jiang
    Gregory D. Davis
    Nature Communications, 8
  • [24] Engineering biotic stress tolerance via CRISPR-Cas mediated genome editing in crop plants
    Hussain, Amjad
    Munir, Mamoona
    Khalid, Awais
    Ali, Musrat
    Amanullah, Mohammed
    Ali, Qurban
    Manghwar, Hakim
    PLANT STRESS, 2024, 14
  • [25] CRISPR-Cas Genome Surgery in Ophthalmology
    DiCarlo, James E.
    Sengillo, Jesse D.
    Justus, Sally
    Cabral, Thiago
    Tsang, Stephen H.
    Mahajan, Vinit B.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2017, 6 (03):
  • [26] Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing
    Balderston, Sarah
    Clouse, Gabrielle
    Ripoll, Juan-Jose
    Pratt, Grace K.
    Gasiunas, Giedrius
    Bock, Jens-Ole
    Bennett, Eric Paul
    Aran, Kiana
    CRISPR JOURNAL, 2021, 4 (03): : 400 - 415
  • [27] Exploiting CRISPR-Cas immune systems for genome editing in bacteria
    Barrangou, Rodolphe
    van Pijkeren, Jan-Peter
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 : 61 - 68
  • [28] An introduction to CRISPR-Cas systems for reprogramming the genome of mammalian cells
    Singh, Vijai
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 1 - 13
  • [29] CRISPR-Cas systems: ushering in the new genome editing era
    Rojo, Fernando Perez
    Nyman, Rikard Karl Martin
    Johnson, Alexander Arthur Theodore
    Navarro, Maria Pazos
    Ryan, Megan Helen
    Erskine, William
    Kaur, Parwinder
    BIOENGINEERED, 2018, 9 (01) : 214 - 221