An Optimized Approach for Intra-Class Fruit Classification Using Deep Convolutional Neural Network

被引:1
|
作者
Singh, Rishipal [1 ]
Rani, Rajneesh [1 ]
Kamboj, Aman [1 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol, Dept Comp Sci & Engn, Jalandhar 144011, Punjab, India
关键词
Intra-class; fruits and vegetables; deep learning; machine learning; computer vision; pre-trained models;
D O I
10.1142/S0219467821400143
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Fruits classification is one of the influential applications of computer vision. Traditional classification models are trained by considering various features such as color, shape, texture, etc. These features are common for different varieties of the same fruit. Therefore, a new set of features is required to classify the fruits belonging to the same class. In this paper, we have proposed an optimized method to classify intra-class fruits using deep convolutional layers. The proposed architecture is capable of solving the challenges of a commercial tray-based system in the supermarket. As the research in intra-class classification is still in its infancy, there are challenges that have not been tackled. So, the proposed method is specifically designed to overcome the challenges related to intra-class fruits classification. The proposed method showcases an impressive performance for intra-class classification, which is achieved using a few parameters than the existing methods. The proposed model consists of Inception block, Residual connections and various other layers in very precise order. To validate its performance, the proposed method is compared with state-of-the-art models and performs best in terms of accuracy, loss, parameters, and depth.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Fruit Fly Classification via Convolutional Neural Network
    Peng, Yingqiong
    Liao, Muxin
    Huang, Weiji
    Deng, Hong
    Ao, Ling
    Hua, Jing
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3395 - 3399
  • [42] Fruit Quality Identification and Classification by Convolutional Neural Network
    Jayanth J.
    Mahadevaswamy M.
    Shivakumar M.
    SN Computer Science, 4 (3)
  • [43] On Intra-Class Variance for Deep Learning of Classifiers
    Pilarczyk, Rafal
    Skarbek, Wladyslaw
    FOUNDATIONS OF COMPUTING AND DECISION SCIENCES, 2019, 44 (03) : 285 - 301
  • [44] Deep Open Set Recognition Using Dynamic Intra-class Splitting
    Schlachter P.
    Liao Y.
    Yang B.
    SN Computer Science, 2020, 1 (2)
  • [45] A Novel Approach for Sentiment Classification by Using Convolutional Neural Network
    Kalaivani, M. S.
    Jayalakshmi, S.
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 143 - 152
  • [46] Multilevel Classification of Drowsiness States using ECG with Optimized Convolutional Neural Network
    Taki, Kentaro
    Ma, Jianhua
    Guo, Ao
    Ma, Muxin
    Qi, Alex
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 437 - 443
  • [47] Motor Imagery EEG Signal Classification Using Optimized Convolutional Neural Network
    Thiyam, Deepa Beeta
    Raymond, Shelishiyah
    Avasarala, Padmanabha Sarma
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (08): : 273 - 279
  • [48] Texture classification using convolutional neural network optimized with whale optimization algorithm
    Dixit, Ujjawal
    Mishra, Apoorva
    Shukla, Anupam
    Tiwari, Ritu
    SN APPLIED SCIENCES, 2019, 1 (06):
  • [49] Texture classification using convolutional neural network optimized with whale optimization algorithm
    Ujjawal Dixit
    Apoorva Mishra
    Anupam Shukla
    Ritu Tiwari
    SN Applied Sciences, 2019, 1
  • [50] A Deep Neural Network Approach using Convolutional Network and Long Short Term Memory for Text Sentiment Classification
    Shoryu, Teragawa
    Wang, Lei
    Ma, Ruixin
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 763 - 768