Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming

被引:97
|
作者
Zhao, Xiaxia [1 ,2 ]
Lu, Gongxuan [1 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Oxo Synth & Select Oxidat, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Steam reforming of ethanol; Hydrogen production; Nickel; Cobalt; High dispersion; Anti-coking; ACETIC-ACID; NI/AL2O3; CATALYSTS; PARTIAL OXIDATION; CARBON-MONOXIDE; LOW-TEMPERATURE; H-2; PRODUCTION; SUPPORTED NI; NATURAL-GAS; BIO-ETHANOL; NICKEL;
D O I
10.1016/j.ijhydene.2015.09.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, an active Ni-Co/Al2O3 catalyst for steam reforming of ethanol (SRE) was reported. Results indicated that the dispersion of active species can be tuned by preparation methods, i.e., by step-step impregnation method and co-impregnation method separately. By comparing the activities and stabilities in the temperature range of 250-650 degrees C under atmospheric pressure, and correlating the characterization results of H-2 chemisorption, XRD, HRTEM and TGA, we found the catalytic performance were dependent on the surface species dispersion over support which could be modulated by preparation process. The ethanol conversion on Ni-Co/Al2O3, Co/Ni/Al2O3 and Ni/Co/Al2O3 catalysts were 68.7%, 50.9%, 36.6% at 350 degrees C, corresponding to the metal species dispersion data 31.5%, 29.1% and 28.0%, respectively. TEM results confirmed these differences corresponded to the metal particles size of the bimetallic catalysts distribution. Higher dispersed catalyst exhibited higher anti-coking properties and stabilities. Under the optimized conditions, the ethanol conversion, H-2 and CO2 selectivities were 97.2%, 88.9% and 87.4%, respectively during a 100 h reaction over Ni-Co/Al2O3 catalyst at 550 degrees C, LHSV of 7.5 h(-1) and a C2H5OH/H2O molar ratio of 13. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3349 / 3362
页数:14
相关论文
共 50 条
  • [21] Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts
    Zhang, Baocai
    Tang, Xiaolan
    Li, Yong
    Cai, Weijie
    Xu, Yide
    Shen, Wenjie
    CATALYSIS COMMUNICATIONS, 2006, 7 (06) : 367 - 372
  • [22] Biogas reforming for hydrogen production over Ni-Co bimetallic catalyst: Effect of second metal components
    Zhao, Jian
    Zhou, Wei
    Xu, Junke
    Wang, Jihui
    Ma, Jianxin
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2013, 34 (07): : 1288 - 1294
  • [23] Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst
    Yang, Yu
    Ma, Jianxin
    Wu, Fei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (07) : 877 - 882
  • [24] Ni-Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil
    Zhang, Fangbai
    Wang, Ning
    Yang, Lu
    Li, Mao
    Huang, Lihong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (32) : 18688 - 18694
  • [25] Steam reforming of ethanol for hydrogen production over MgO-supported Ni-based catalysts
    Wurzler, Gleicielle T.
    Rabelo-Neto, Raimundo C.
    Mattos, Lisiane V.
    Fraga, Marco A.
    Noronha, Fabio B.
    APPLIED CATALYSIS A-GENERAL, 2016, 518 : 115 - 128
  • [26] Hydrogen Production from Ethanol Steam Reforming Over Ni/CeO2 Nanocomposite Catalysts
    Humberto V. Fajardo
    Luiz F. D. Probst
    Neftalí L. V. Carreño
    Irene T. S. Garcia
    Antoninho Valentini
    Catalysis Letters, 2007, 119 : 228 - 236
  • [27] Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals
    Profeti, Luciene P. R.
    Dias, Joelmir A. C.
    Assaf, Jose M.
    Assaf, Elisabete M.
    JOURNAL OF POWER SOURCES, 2009, 190 (02) : 525 - 533
  • [28] Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO2 catalysts
    Liu Qihai
    Liu Zili
    Zhou Xinhua
    Li Cuijin
    Ding Jiao
    JOURNAL OF RARE EARTHS, 2011, 29 (09) : 872 - 877
  • [29] Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO2 catalysts
    刘其海
    刘自力
    周新华
    李翠金
    丁娇
    Journal of Rare Earths, 2011, 29 (09) : 872 - 877
  • [30] Hydrogen production from ethanol steam reforming over Ni/CeO2 nanocomposite catalysts
    Fajardo, Humberto V.
    Probst, Luiz F. D.
    Carreno, Neftali L. V.
    Garcia, Irene T. S.
    Valentini, Antoninho
    CATALYSIS LETTERS, 2007, 119 (3-4) : 228 - 236